

Test Certificate

A sample of the following product received on April 3, 2012 and tested on April 3, 11, 12, 13, 14, 16 and 17, 2012 complied with the requirements of,

- Subpart B of Part 15 of FCC Rules for Class A digital devices
- Industry Canada Interference Causing Equipment Standard ICES-003 Issue 4, dated February 2004 (Class A)
- VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment, dated April 2012 (Class A)
- EN 55022:2010, "Information technology equipment Radio disturbance characteristics Limits and methods of measurement" (Class A)
- CISPR 22:2008 "Information technology equipment Radio disturbance characteristics Limits and methods of measurement" (Class A)
- AS/NZS CISPR 22:2009: "Information technology equipment Radio disturbance characteristics – Limits and methods of measurement" (Class A)
- EN 55024:2010 "Information technology equipment Immunity characteristics, Limits and method of measurement."
- CISPR 24:2010 "Information technology equipment Immunity characteristics, Limits and method of measurement."
- EN 61000-3-2:2006 /A1:2009 /A2:2009 AC Current Harmonics
- EN 61000-3-3:2008 AC Voltage Fluctuations

given the measurement uncertainties detailed in Elliott report R87364 Rev 1.

SUPERMICRO Computer, Inc.

Super Storage Server

Model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12)

Wayne Fisher Engineering Team Lead SUPERMICRO Computer, Inc.

Printed Name

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Elliott Laboratories, LLC an NTS Company www.elliottlabs.com 41039 Boyce Road Fremont, CA. 94538

510-578-3500 Phone 510-440-9525 Fax

EMC Test Report Class A Information Technology Equipment Class A Digital Device FCC Part 15; Industry Canada ICES-003 Issue 4 VCCI Regulations 2012 EN 55022:2010; CISPR 22:2008 AS/NZS CISPR 22:2009 EN 61000-3-2:2006 /A1:2009 /A2:2009, EN 61000-3-2:2008 EN 55024:2010; CISPR 24:2010

Model: 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12)

COMPANY:	SUPERMICRO Computer, Inc. 980 Rock Avenue San Jose, CA 95131
TEST SITE(S):	Elliott Laboratories 41039 Boyce Road Fremont, CA. 94538-2435
REPORT DATE:	May 2, 2012
REISSUE DATE:	May 17, 2012
FINAL TEST DATES:	April 3, 11, 12, 13, 14, 16 and 17, 2012
TOTAL NUMBER OF PAGES:	122

PROGRAM MGR / **TECHNICAL REVIEWER:**

Wayne Fisher Engineering Team Lead

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	05-02-2012	First release	
1	05-17-2012	Reissued to add model names and correct typos	Dave Guidotti

TABLE OF CONTENTS

REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	6
OBJECTIVE	6
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS	
CONDUCTED EMISSIONS (MAINS PORT)	
CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)	8
RADIATED EMISSIONS	
EN 61000-3-2, EN 61000-3-3 TEST RESULTS	10
INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS	11
MEASUREMENT UNCERTAINTIES	12
EQUIPMENT UNDER TEST (EUT) DETAILS	13
GENERAL	
OTHER EUT DETAILS	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	15
EUT OPERATION	
EMISSIONS TESTING	
RADIATED AND CONDUCTED EMISSIONS	
RADIATED EMISSIONS CONSIDERATIONS	18
CONDUCTED EMISSIONS CONSIDERATIONS	
HARMONIC CURRENT EMISSIONS, VOLTAGE FLUCTUATIONS AND FLICKER	
EMISSIONS MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
IMPEDANCE STABILIZATION NETWORK (ISN)	
FILTERS/ATTENUATORS	
ANTENNAS	20
ANTENNA MAST AND EQUIPMENT TURNTABLE	
HARMONICS ANALYZER SYSTEM	
VOLTAGE FLUCTUATIONS MEASUREMENT SYSTEM INSTRUMENT CALIBRATION	
EMISSIONS TEST PROCEDURES	
CONDUCTED EMISSIONS (MAINS)	
CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)	
RADIATED EMISSIONS (SEMI-ANECHOIC TEST ENVIRONMENT)	22
Preliminary Scan	
Final Maximization	
RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT) Preliminary Scan	
Final Maximization	
HARMONIC CURRENT EMISSIONS	
VOLTAGE FLUCTUATIONS AND FLICKER	
VOLTAGE FLUCTUATIONS AND FLICKER	24
VOLTAGE FLUCTUATIONS AND FLICKER	24 24
VOLTAGE FLUCTUATIONS AND FLICKER	24 24 24

GENERAL INFORMATION	
IMMUNITY MEASUREMENT INSTRUMENTATION	25
ELECTROSTATIC DISCHARGE TEST SYSTEM	
ELECTROMAGNETIC FIELD TEST SYSTEM	
ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM	
SURGE TEST SYSTEM	
CONDUCTED INTERFERENCE TEST SYSTEM	
VOLTAGE VARIATION TEST SYSTEM	
INSTRUMENT CALIBRATION	
IMMUNITY TEST PROCEDURES	
EQUIPMENT PLACEMENT	
APPLICATION OF ELECTROSTATIC DISCHARGES	
APPLICATION OF ELECTROMAGNETIC FIELD APPLICATION OF ELECTRICAL FAST TRANSIENTS	
APPLICATION OF ELECTRICAL FAST TRANSIENTS	
APPLICATION OF SURGES	
APPLICATION OF VOLTAGE VARIATIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C CURRENT HARMONICS TEST DATA (EN 61000-3-2)	
APPENDIX D VOLTAGE FLUCTUATIONS TEST DATA	
APPENDIX E AC CURRENT HARMONICS AND VOLTAGE FLUCTUATIONS TEST	
CONFIGURATION PHOTOGRAPHS	110
APPENDIX F PRODUCT LABELING REQUIREMENTS	
APPENDIX G USER MANUAL REGULATORY STATEMENTS	
APPENDIX H ADDITIONAL INFORMATION FOR VCCI	115
APPENDIX I ADDITIONAL INFORMATION FOR AUSTRALIA AND NEW ZEALAND	116
APPENDIX J BASIC AND REFERENCE STANDARDS	117
SUBPART B OF PART 15 OF FCC RULES FOR DIGITAL DEVICES.	
VCCI REGULATIONS FOR INFORMATION TECHNOLOGY EQUIPMENT, DATED APRIL 2009	
EN 55022:2010	
CISPR 22:2008	
EN 55024:2010	
CISPR 24:2010	
END OF REPORT	122

SCOPE

Governments and standards organizations around the world have published requirements regarding the electromagnetic compatibility (EMC) of electronic equipment. Testing has been performed on the SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12), pursuant to the following standards.

Standard	Title	Standard Date
FCC Part 15, Subpart B	Radio Frequency Devices	October 2011 as Amended
ICES-003, Issue 4	Digital apparatus	2004
VCCI V-3	VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment	April 2012
CISPR 22	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement	2008 w A1:
AS/NZS CISPR 22	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement	2009
EN 55022	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement	2010
EN 61000-3-2	Electromagnetic compatibility - Limits For Harmonic Current Emissions (Equipment Input Current <= 16A Per Phase)	2006 + A1:2009 + A2:2009
EN 61000-3-3	Electromagnetic compatibility - Limitation Of Voltage Fluctuations And Flicker In Low Voltage Supply Systems For Equipment With Rated Current <= 16A Per Phase	2008
EN 55024	Information technology equipment – Immunity characteristics, Limits and method of measurement	2010
CISPR 24	Information technology equipment – Immunity characteristics, Limits and method of measurement	2010

All measurements and evaluations have been in accordance with these specifications, test procedures, and measurement guidelines as outlined in Elliott Laboratories test procedures, and in accordance with the standards referenced therein (refer to Appendix J).

OBJECTIVE

The objective of SUPERMICRO Computer, Inc. is to:

- declare conformity with the essential requirements of the EMC directive 2004/108/EC using the harmonized standard(s) referenced in this report;
- declare conformity with the electromagnetic compatibility (EMC) regulatory arrangement of the Australian Communications and Media Authority (ACMA);
- verify compliance with FCC requirements for digital devices and Canada's requirements for digital devices;
- verify compliance to the Japanese VCCI requirements for Information Technology Equipment;

STATEMENT OF COMPLIANCE

The tested sample of SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12) complied with the requirements of:

Standard/Regulation	Equipment Type/Class	Standard Date
Subpart B of Part 15 of the FCC Rules (CFR title 47)	Class A	2011 as amended
ICES-003, Issue 4	Class A	2004
VCCI Regulations V-3	Class A	2012
EN 55022	Class A	2010
CISPR 22 Edition 6	Class A	2008
AS/NZS CISPR 22	Class A	2009
EN 61000-3-2	Class A	2006 +A1:2009 +A2:2009
EN 61000-3-3	General Limits for d _{max} , P _{lt} , P _{st} , d(t), and d _c	2008
EN55024	-	2010
CISPR 24	-	2010

This report is suitable for demonstrating compliance with the EMC requirements in Australia and New Zealand. Refer to Appendix I for more details.

As specified in Section 15.101 of FCC Part 15, unintentional radiators shall be authorized prior to the initiation of marketing. Based on the description of the EUT, the following criteria per Section 15.101 of FCC Part 15 were applied to the EUT:

Type of device	Equipment authorization required
Class A digital devices, peripherals & external switching	Verification
power supplies	

The test results recorded herein are based on a single type test of the SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12) and therefore apply only to the tested sample(s). The sample was selected and prepared by Victor Yuan of SUPERMICRO Computer, Inc..

Maintenance of compliance is the responsibility of the company. Any modification of the product that could result in increased emissions or susceptibility should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different enclosure, different line filter or power supply, harnessing and/or interface cable changes, etc.).

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

INFORMATION TECHNOLOGY EQUIPMENT EMISSIONS TEST RESULTS

The following emissions tests were performed on the SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12). The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The complete test data is provided in the appendices of this report.

CONDUCTED EMISSIONS (MAINS PORT)

Frequency Range Operating Voltage	Standard/Section	Requirement	Measurement	Margin	Status
0.15-30 MHz, 230 V, 50 Hz P/S: PWS-1K28P- SQ	FCC § 15.107(b) VCCI Table 4.1 CISPR 22 Table 1 EN 55022 Table 1 AS/NZS CISPR 22 Table 1 (Class A)	0.15-0.5 MHz: 79 dBµV QP 66 dBµV Av	36.8 dBµV @ 0.301 MHz	-29.2 dB	Complied
0.15-30 MHz, 230 V, 50 Hz P/S: PWS-920P- 1R			53.1 dBµV @ 0.679 MHz	-6.9 dB	Complied
0.15-30 MHz, 120 V, 60 Hz P/S: PWS-1K28P- SQ		0.5-30 MHz: 73 dBμV QP 60 dBμV Av	34.3 dBµV @ 0.798 MHz	-25.7 dB	Complied
0.15-30 MHz, 120 V, 60 Hz P/S: PWS-920P- 1R			48.1 dBµV @ 0.721 MHz	-11.9 dB	Complied

CONDUCTED EMISSIONS (TELECOMMUNICATIONS PORTS)

Frequency Range Measurement <i>Port</i>	Data Rate	Standard/Section	Requirement	Measurement	Margin	Status
0.15-30 MHz, Voltage <i>Ethernet</i>	10/100 Mb/s	EN 55022 Table 3 CISPR 22 Table 3 VCCI Table 4.3 AS/NZS CISPR 22 Table 3 KN22 (Class A)	0.15-0.5 MHz, 97-87 dBµV QP 84-74 dBµV Av 0.5-30.0 MHz: 87 dBµV QP 74 dBµV Av	63.9 dBµV @ 1.763 MHz	-10.1dB	Complied

RADIATED EMISSIONS

Frequency Range	Standard/Section	Requirement	Measurement	Margin	Status	
30-1000 MHz	EN 55022 Table 5 CISPR 22 Table 5 FCC §15.109(g) VCCI Table 4.5 AS/NZS CISPR 22 Table 5 Class A	30-230 MHz, 40 dBµV/m 230-1000 MHz, 47 dBµV/m (10 m limit)	36.4 dBµV/m @150.01 MHz	-3.6dB	Complied	
1000-15000 MHz Note 1	FCC §15.109(b) Class A	49.5 dBµV/m Av 69.5 dBµV/m Pk (10 m limit)	47.2 dBμV/m @6000.0 MHz	-2.3 dB	Complied	
1000-6000 MHz Note 2	EN 55022 Table 7 CISPR 22 Table 7 VCCI Table 4.7 KN22 (Free-Space Measurement) Class A	1-3 GHz 56 dBμV/m Av 76 dBμV/m Pk 3-6 GHz 60 dBμV/m Av 80 dBμV/m Pk (3 m limit)	52.4 dBμV/m @1200.1 MHz	-3.6 dB	Complied	
 Note 1 As the highest frequency generated in the EUT was declared to be above 1 GHz, the upper frequency for radiated measurements was 5 times the highest frequency or 40 GHz, whichever is less. For this device the highest frequency declared was 2 GHz so the highest frequency measured was 15 GHz. Note 2 As the highest frequency of the internal sources of the EUT was declared to be above 1 GHz, the upper frequency for radiated measurements was 5 times the highest frequency or 6 GHz, whichever is less. For this device the highest frequency declared was 2 GHz so the highest frequency or 6 GHz, whichever is less. For this device the highest frequency declared was 2 GHz so the highest frequency or 6 GHz, whichever is less. For this device the highest frequency declared was 2 GHz so the highest frequency measured was 6 GHz. 						

EN 61000-3-2, EN 61000-3-3 TEST RESULTS

The following emissions tests were performed on the SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12). The measurements were extracted from the data recorded during testing and represent the highest amplitude emissions relative to the specification limits. The actual test results are contained in Appendix C and Appendix D.

Frequency Range	Standard/Section	Requirement	Measurement	% of limit	Status
100 Hz – 2000 Hz P/S: PWS-1K28P- SQ	EN 61000-3-2 Class A	Refer to standard and test data	0.017 A at harmonic #39	30.00% of limit	Complied
100 Hz – 2000 Hz P/S: PWS-920P- 1R	EN 61000-3-2 Class A	Refer to standard and test data	0.009 A at harmonic #31	12.08% of limit	Complied
100 Hz – 2000 Hz SSG-6047R- E1R24N	EN 61000-3-2 Class A	Refer to standard and test data	0.201 A at harmonic #3	8.74% of limit	Complied
100 Hz – 2000 Hz SSG-6047R- E1R36N	EN 61000-3-2 Class A	Refer to standard and test data	0.019 A at harmonic #40	41.54% of limit	Complied
P/S: PWS-1K28P- SQ	EN 61000-3-3	$\begin{array}{l} d(t) \leq 3.3\% \\ dc \leq 3.3\% \\ d_{max} \leq 4.0\% \\ P_{st} \leq 1.0 \\ P_{lt} \leq 0.65 \end{array}$	dt (%): 0.00 dc (%): 0.00 d _{max} (%): 0.00 P _{st} : 0.064 P _{lt} : not evaluated	-	Complied
P/S: PWS-920P- 1R	EN 61000-3-3	$\begin{array}{l} d(t) \leq 3.3\% \\ dc \leq 3.3\% \\ dmax \leq 4.0\% \\ Pst \leq 1.0 \\ Plt \leq 0.65 \end{array}$	dt (%): 0.00 dc (%): 0.00 dmax (%): 0.00 Pst : 0.064 Plt: not evaluated	-	Complied
SSG-6047R- E1R24N	EN 61000-3-3	$\begin{array}{l} d(t) \leq 3.3\% \\ dc \leq 3.3\% \\ dmax \leq 4.0\% \\ Pst \leq 1.0 \\ Plt \leq 0.65 \end{array}$	dt (%): 0.00 dc (%): 0.00 d _{max} (%): 0.00 P _{st} : 0.064 P _{lt} : 0.035	-	Complied
SSG-6047R- E1R36N	EN 61000-3-3	$\begin{array}{l} d(t) \leq 3.3\% \\ dc \leq 3.3\% \\ dmax \leq 4.0\% \\ Pst \leq 1.0 \\ Plt \leq 0.65 \end{array}$	dt (%): 0.00 dc (%): 0.00 dmax (%): 0.00 Pst : 0.064 Plt: 0.064	-	Complied

INFORMATION TECHNOLOGY EQUIPMENT IMMUNITY TEST RESULTS

The following tests were performed on the SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12). The results are based upon performance criteria defined by the company and as detailed in this test report.

Teet	Basic Standard	Level			erion	Status
Test		Required	Tested	Req.	Met	Status
ESD	EN 61000-4-2 IEC 61000-4-2	4 kV CD 8 kV AD			А	Complied
RF EM Field AM 80% AM 1 kHz	EN 61000-4-3 80-1000 MHz 80-1000 MHz IEC 61000-4-3 3 V/m 3 V/m		A	А	Complied	
EFT, AC Power Port	EN 64000 4 4	1.0 kV	1 kV	В	Α	Complied
EFT, DC Power Port	EN 61000-4-4 IEC 61000-4-4	0.5 kV	NA	В	NA	N/A – Note 1
EFT, Signal Ports		0.5 kV	0.5 kV	В	А	Complied
Surge, AC Power Port		1 kV DM, 2 kV CM 1.2/50 μs	1 kV DM, 2 kV CM 1.2/50 μs	В	Α	Complied
Surge, DC Power Port	EN 61000-4-5 IEC 61000-4-5	0.5 kV 1.2/50 µs	NA	В	NA	N/A – Note 1
Surge, Signal Ports		1.0 kV 10/700 μs	NA	С	NA	N/A – Note 2
		4.0 kV 10/700 μs	NA	С	NA	N/A – Note 2
RF, conducted continuous, Signal Ports		0.15-80 MHz, 3 Vrms 80% AM 1 kHz	0.15-80 MHz, 3 Vrms 80% AM 1 kHz	А	А	Complied
RF, conducted continuous, AC Power Port	EN 61000-4-6 IEC 61000-4-6	0.15-80 MHz, 3 Vrms 80% AM 1 kHz	0.15-80 MHz, 3 Vrms 80% AM 1 kHz	A	А	Complied
RF, conducted continuous, DC Power Port		0.15-80 MHz, 3 Vrms 80% AM 1 kHz	NA	А	NA	N/A – Note 1
Power Frequency Magnetic Field	EN 61000-4-8 IEC 61000-4-8	3A/m 50 Hz 60 Hz	NA	A	NA	N/A – Note 3
Voltage Dips and Interrupts (50 Hz) Note 1 The EUT does not ha	EN 61000-4-11 IEC 61000-4-11	>95%, 0.5 cycles 30%, 25 cycles >95%, 250 cycles	>95%, 0.5 cycles 30%, 25 cycles >95%, 250 cycles	B C C	A A C	Complied

Note 2 The EUT does not have any ports that connect directly to outdoor cables.

Note 3 SUPERMICRO Computer, Inc. stated that the EUT does not contain any components susceptible to 50Hz magnetic fields.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of k=2, which gives a level of confidence of approximately 95%. The levels were found to be below levels of *U*cispr and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Conducted Emissions	dBuV or dBuA	150 kHz – 30 MHz	± 2.2 dB
Radiated Electric Field	dBuV/m	30-1000 MHz	± 3.6 dB
Radiated Electric Field	ubuv/m	1000-40,000 MHz	± 6.0 dB
AC Current Harmonics	Amps	50 to 2,000 Hz	± 0.12 %
AC Voltago Elickor	Voltage	N/A	± 0.12 %
AC Voltage Flicker	Pst, Plt	N/A	± 3.46 %
Radiated Immunity	V/m	80-2700 MHz	- 26.3%, + 29.97%
ESD	KV	N/A	± 8.6%
Fast Transients	Voltage	N/A	± 5.98 %
	Timing	N/A	± 8.60 %
Surge	Voltage	N/A	± 4.92 %
RF Common Mode (CDN method)	Vrms	N/A	-12.64 %, +13.33 %
RF Common Mode (BCI method)	Vrms	N/A	-13.45 %, +15.32 %
Voltage Dips	Voltage	N/A	± 2.32 %
Voltage Dips	Timing	N/A	± 0.08 mS

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The SUPERMICRO Computer, Inc. model 6037R-E1R16N (X9Dri-LN4F+) (836-9), 6047R-E1R24N (X9DRi-LN4F+) (846-9) and 6047R-E1R36N (X9DRi-LN4F+) (847-12) is a Storage Server system comprised of 3 units. (2)4U Storage Servers and (1) 3U Storage Server that are designed to store and retrieve data. Normally the EUT would be rack mounted during operation. The EUT was treated as table-top equipment during testing. The electrical rating of the EUT is 100-230 Volts, 50/60 Hz, and 5 Amps.

The sample was received on April 3, 2012 and tested on April 3, 11, 12, 13, 14, 16 and 17, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number
Supermicro Computer	6047R-E1R24N (X9DRi-	4U Storage Server	Proto
Supermicro Computer	LN4F+) (846-9)	40 Storage Server	
Supermicro Computer	6037R-E1R16N (X9DRi-	3U Storage Server	Proto
Supermicro Computer	LN4F+) (836-9)	50 Storage Server	FIOLO
Supermicro Computer	6047R-E1R36N (X9DRi-	4U Storage Server	Proto
Supermicro Computer	LN4F+) (847-12)	40 Storage Server	F1010

OTHER EUT DETAILS

The following EUT details should be noted: CPU @ 2.0GHz

6047R-E1R24N EUT Test Configuration

	Host System	/EUT Configuration List	t
Model/Part #:		6047R-E1R24N	
Subassembly	Manufacturer	Model	Qty/Specs/Remarks
Chassis/Enclosure	Ablecom Technology	CSE-846	-
Power supply	Supermicro	PWS-920P-1R	1.11
Main board	Supermicro	X9DRi-LN4F+	-
Backplane	Supermicro	SAS2-846EL1	-
CPU/Processor	Intel	Xeon E5	
Memory	Samsung	Pc3	2GB/8pcs
Hard drive disk	Hitachi	0F10452	2TB
Rear fan	Sanyo	9GA0812P2M0031	Fan-0125L4/2pcs/12V, 0.35A
Mid Fan	Nidec	V80E12BHA5-57	Fan-0127L4/3pcs/12v, 0.6A
lpass cable	Amphenol	-	SAS cable with 2 port external bracket
RAID	Supermicro	AOC-SAS2LP-H8iR	1.10

6037R-E1R16N EUT Test Configuration

Host System/EUT C	onfiguration List		
Model/Part #:		6037R-E1R16N	
Subassembly	Manufacturer	Model	Qty/Specs/Remarks
Chassis/Enclosure	Ablecom Technology	CSE-846	-
Power supply	Supermicro	PWS-920P-1R	1.11
Main board	Supermicro	X9DRi-LN4F+	-
Backplane	Supermicro	SAS2-846EL1	-
CPU/Processor	Intel	Xeon E5	
Memory	Samsung	Pc3	2GB/8pcs
Hard drive disk	Hitachi	0F10452	2TB
Rear fan	Sanyo	9GA0812P2M0031	Fan-0125L4/2pcs/12V, 0.35A
Mid Fan	Nidec	V80E12BHA5-57	Fan-0127L4/3pcs/12v, 0.6A
lpass cable	Amphenol	-	SAS cable with 2 port external
•			bracket
RAID	Supermicro	AOC-SAS2LP-H8iR	1.10

6047R-E1R36N EUT Test Configuration

Host System/EUT C	onfiguration List		
Model/Part #:		6047R-E1R36N	
Subassembly	Manufacturer	Model	Qty/Specs/Remarks
Chassis/Enclosure	Ablecom Technology	CSE-846	-
Power supply	Supermicro	PWS-1K28P-SQ	1.11
Main board	Supermicro	X9DRi-LN4F+	-
Backplane	Supermicro	SAS2-846EL1	-
CPU/Processor	Intel	Xeon E5	
Memory	Samsung	Pc3	2GB/8pcs
Hard drive disk	Hitachi	0F10452	2TB
Rear fan	Sanyo	9GA0812P2M0031	Fan-0125L4/2pcs/12V, 0.35A
Mid Fan	Nidec	V80E12BHA5-57	Fan-0127L4/3pcs/12v, 0.6A
lpass cable	Amphenol	-	SAS cable with 2 port external bracket
RAID	Supermicro	AOC-SAS2LP-H8iR	1.10

ENCLOSURE

The EUT #1enclosure is primarily constructed of metal. It measures approximately 44 cm wide by 71 cm deep by 17.5 cm high.

The EUT #2enclosure is primarily constructed of metal. It measures approximately 44 cm wide by 66 cm deep by 17.5 cm high.

The EUT #3enclosure is primarily constructed of metal. It measures approximately 44 cm wide by 66 cm deep by 13.5 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

	Emissior	ns and Surge testin	g	
Company	Model	Description	Serial Number	FCC ID
None	-	-	-	-

	All oth	er immunity tests		
Company	Model	Description	Serial Number	FCC ID
-	-	JBODS	-	-
Samsung	BX2231	monitor	Z2PNHCKB102 753	-
Viewsonic	VA903B	monitor	Q87064103070	-
NEC	MultisyncLCD1 550V-BK	monitor	2600635TA	-
Microsoft	X802382	mouse	56180- 5235092586-4	-
Logitech	Y-U0009	keyboard	-	-

No remote support equipment was used during testing.

File: R87364 Rev 1

EUT INTERFACE PORTS

Dont	Connected To		Cable(s)	
Port	Connected To	Description	Shielded/Unshielded	Length (m)
2x RJ-45	loopback	Multi-wire	unshielded	>3
2xExternal SAS	JBODS	Multi-wire	shielded	<3
AC Power	AC Mains	Multi-wire	unshielded	2

The I/O cabling configuration during emissions testing was as follows:

Note: The keyboard, monitor, and mouse ports were not connected during emissions testing. The manufacturer stated that these are for maintenance purposes and therefore would not normally be connected.

The I/O cabling configuration during emissions testing was as follows:

Dort	Connected To		Cable(s)	
Port	Connected 10	Description	Shielded/Unshielded	Length (m)
USB	Mouse	Multi-wire	shielded	1.0
USB	Keyboard	Multi-wire	shielded	1.0
Video (x3)	Monitor (x3)	Multi-wire	shielded	1.0
2x RJ-45	loopback	Multi-wire	unshielded	>3
2xExternal SAS	JBODS	Multi-wire	shielded	<3
AC Power	AC Mains	Multi-wire	unshielded	2.0

Note: The keyboard, monitor, and mouse ports were only connected during immunity testing. The manufacturer stated that these are for maintenance purposes and therefore would not normally be connected.

EUT OPERATION

During emissions testing the EUT shall continue to scroll "H" pattern to the VGA port. The EUT was also exercising the Burn-In Diagnostic Software.

During immunity test the EUT was exercised by having the scrolling "H" pattern keep showing on the screen.

Normal operation is indicated by having the scrolling "H" pattern keep showing on the screen and shall be monitored by the Burn-In Diagnostic Software.

The performance criteria applied during immunity testing were:

Criterion A:

During and after testing the EUT shall continue to have the scrolling "H" pattern keep showing on the screen

Criterion B:

During application of the transient test, degradation of performance including the scrolling "H"s may disappear briefly provided that the EUT self-recovers to normal operation after testing without any operator intervention.

Criterion C:

Loss of function is allowed provided that normal operation can be restored by operator intervention.

EMISSIONS TESTING

RADIATED AND CONDUCTED EMISSIONS

Final test measurements were taken at the Elliott Laboratories Anechoic Chambers listed below. The test sites contain separate areas for radiated and conducted emissions testing. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are registered with the VCCI and are on file with the FCC and Industry Canada.

Site	Reg	istration Num	bers	Location
Site	VCCI	FCC	Canada	Location
	R-1684			
Chamber 4	G-57	211948	IC 2845B-4	41020 Dovoo Dood
	T-1640			41039 Boyce Road Fremont, CA 94538-2435
Chamber 7	C-3759	A2LA	IC 2845B-7	Fiemont, CA 94558-2455
Chamber /	C-3757	accredited	IC 20+5D-7	

RADIATED EMISSIONS CONSIDERATIONS

Radiated emissions measurements were made with the EUT powered from a supply voltage within the expected tolerances of each nominal operating voltage/frequency for each geographical regions covered by the scope of the standards referenced in this report.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions tests are performed in conformance with ANSI C63.4, CISPR 22, and Subpart B of Part 15 of FCC Rules for Digital Devices.

Mains port measurements are made with the EUT connected to the public power network through nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

Telecommunication port measurements are made with the unshielded network cable connected through an impedance stabilization network (ISN) appropriate to the type of cable employed. Where no suitable ISN is available measurements are made using a capacitive voltage probe (CVP) and a current probe. If shielded cables are specified for the port under test the measurement is made of the noise voltage on the shield of the cable via a 100 ohm resistor.

HARMONIC CURRENT EMISSIONS, VOLTAGE FLUCTUATIONS AND FLICKER

Testing was performed at the Elliott Laboratories test site located at 41039 Boyce Road, Fremont, CA 94538-2435.

EMISSIONS MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1:2006 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7 GHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

Measurements are converted to the field strength at an antenna or voltage developed at the LISN (or ISN) measurement port, which is then compared directly with the appropriate specification limit under software control of the test receivers and spectrum analyzers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted emission measurements utilize a fifty micro-Henry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250-uH CISPR adapter. This network provides for calibrated radio-frequency noise measurements by the design of the internal low-pass and high-pass filters on the EUT and measurement ports, respectively.

IMPEDANCE STABILIZATION NETWORK (ISN)

Telecommunication port conducted emission measurements utilize an Impedance Stabilization Network with a 150-ohm termination impedance and specific longitudinal conversion loss as the voltage monitoring point. This network provides for calibrated radio-frequency noise measurements by the design of the internal circuitry on the EUT and measurement ports, respectively. For current measurements, a current probe with a uniform frequency response and less than 1-ohm insertion impedance is used.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high-amplitude transient events.

ANTENNAS

A bilog antenna or combination of biconical and log periodic antennas are used to cover the range from 30 MHz to 1000 MHz. Narrowband tuned dipole antennas may be used over the entire 30 to 1000 MHz frequency range for precision measurements of field strength. Above 1000 MHz, horn antennas are used. The antenna calibration factors are included in site factors that are programmed into the test receivers or data collection software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

ANSI C63.4 and CISPR 22 specify that the test height above ground for table-mounted devices shall be 80 centimeters. Floor-mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material up to 12-mm thick if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

HARMONICS ANALYZER SYSTEM

A California Instruments CTS system is used for current and voltage harmonics measurements. The system is capable of performing the analysis of both current and voltage harmonics required by EN 61000-3-2. The AC power source integrated into the test system complies with the source voltage harmonic requirements EN 61000-3-2.

VOLTAGE FLUCTUATIONS MEASUREMENT SYSTEM

A California Instruments CTS system is used for voltage fluctuations measurements. The system is capable of performing the short-term and long-term flicker severity calculations in accordance with the requirements of EN 61000-3-3. The AC power source integrated into the test system complies with the source impedance requirements EN 61000-3-3.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

EMISSIONS TEST PROCEDURES

EUT AND CABLE PLACEMENT

The standards require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4 and CISPR 22, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS (MAINS)

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

CONDUCTED EMISSIONS (TELECOMMUNICATION PORTS)

Conducted emissions voltages are measured at a point 80 cm from the EUT. If conducted emission currents are measured, the current probe is located 70 cm from the EUT. Preliminary measurements are made to determine the highest-amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak-mode scan is then performed in the position and mode for which the highest emission was noted. Emissions that have peak values close to the specification limit are also measured in the quasi-peak and average detection modes to determine compliance except when the amplitude of the emission when measured with the quasi-peak detector is more than 10 dB below the specification limit for average measurements. In this case only quasi-peak measurements are performed.

RADIATED EMISSIONS (SEMI-ANECHOIC TEST ENVIRONMENT)

Radiated emissions measurements in a semi-anechoic environment are performed in two phases (preliminary scan and final maximization).

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulations specified on page 1. One or more of these are performed with the antenna polarized vertically and one or more of these are performed with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions if required. Other methods used during the preliminary scan for EUT emissions involve scanning with near-field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth that results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions that have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

For measurements above 1 GHz every effort is made to ensure the EUT remains within the cone of radiation of the measurement antenna (i.e. 3 dB beam-width of the antenna). This may include rotating the product and/or angling the measurement antenna.

When Testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 m. Maximum emissions are found within this restricted range because emission levels decrease over distance and as the antenna is raised above 2.5 m, the distance from the EUT increases. As a result of the increased measurement distance, at antenna heights above 2.5 m, lower emission levels are measured as compared to emissions levels measured at antenna heights at 2.5 m and below.

RADIATED EMISSIONS (FREE-SPACE TEST ENVIRONMENT)

Anechoic material is placed on the floor between the EUT and the measurement antenna and behind the EUT to ensure that the test site complies with the requirements of CISPR 16 for measurements of radiated field strength above 1 GHz in a free-space environment.

The measurements are made in two phases (preliminary scan and final maximization).

Preliminary Scan

A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in one or more given modes of operation. Scans are performed from 1 GHz up to the frequency required with the antenna polarized vertically and repeated with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360° with the measurement antenna set at a height equal to the center height of the EUT. If necessary additional scans are performed with the antenna height adjusted up and down to ensure the measurement antenna illuminates the entire height of the EUT. A peak detector is used for the preliminary scan and results compared to the average limit.

Final Maximization

During final maximization, the highest-amplitude emissions identified in the preliminary scan are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. For small EUT fitting within the beam-width of the measurement antenna, the azimuth resulting in the highest emission is the maintained, and the measurement antenna is positioned at a fixed height for final measurements.

For large EUT not fitting within the beam-width of the measurement antenna, the azimuth that results in the highest emission is then maintained while varying the antenna height from one meter up to the height of the top of the EUT (when necessary). A second rotation of the EUT at the new height may be performed to ensure the highest field strength is obtained.

Peak and average measurements are made of the signal with the level maximized for EUT azimuth and, where necessary, antenna height. Each recorded level is corrected by test software using appropriate factors for cables, connectors, antennas, and preamplifier gain.

HARMONIC CURRENT EMISSIONS

Harmonic current emissions are measured with the EUT operating as detailed in Appendix C of EN 61000-3-2. The operating requirements for Information Technology Equipment (ITE) are that the EUT be configured to its rated current. For some types of ITE equipment this may necessitate the use of additional (resistive) cards.

VOLTAGE FLUCTUATIONS AND FLICKER

Voltage fluctuations and flicker measurements are made with the EUT operating as detailed in Appendix A of EN 61000-3-3:. The operating requirements for consumer electronics equipment are that the EUT be configured to produce the most unfavorable sequence of voltage fluctuations.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

IMMUNITY TESTING

GENERAL INFORMATION

Final tests were performed at the Elliott Laboratories Test Sites located at41039 Boyce Road, Fremont, CA 94538-2435. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent CENELEC and IEC standards.

All immunity tests were performed with the host system operating from an AC source voltage within the operating ranges specified for the product, meeting the requirement detailed in EN 55024 / CISPR 24 section 6.1.

IMMUNITY MEASUREMENT INSTRUMENTATION

ELECTROSTATIC DISCHARGE TEST SYSTEM

An ESD generator is used for all testing. It is capable of applying electrostatic discharges in both contact discharge mode to 8 kV and air discharge mode to 16.5 kV in both positive and negative polarities in accordance with the IEC/EN 61000-4-2 basic EMC publication.

ELECTROMAGNETIC FIELD TEST SYSTEM

A signal generator and power amplifiers are used to provide a signal at the appropriate power and frequency to an antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC/EN 61000-4-3 basic EMC publication.

ELECTRICAL FAST TRANSIENT/BURST TEST SYSTEM

An electrical fast transient/burst generator is used for all testing. It is capable of applying the required fast transient immunity test levels to the mains at any phase angle with respect to the mains voltage waveform and to attached cables via a capacitive coupling clamp in accordance with the IEC/EN 61000-4-4 basic EMC publication.

SURGE TEST SYSTEM

A surge generator is used for all testing. It is capable of providing the required surge immunity test levels to the mains port at any phase angle with respect to the mains line voltage waveform or to the signal port in accordance with the IEC/EN 61000-4-5 basic EMC publication.

For I/O line surges a surge coupling network is used to couple the output from the generator to the I/O lines. The generator can generate the CWG (1.2/50 μ S) and CCITT (70/100 μ S) waveforms as required by the IEC/EN 61000-4-5 basic standard.

CONDUCTED INTERFERENCE TEST SYSTEM

A signal generator and power amplifier are used to provide a signal at the appropriate power and frequency through a coupling network to obtain the required electromagnetic signal on the power cord and attached cables of the EUT in accordance with the IEC/EN 61000-4-6 basic immunity standard.

VOLTAGE VARIATION TEST SYSTEM

A power-line disturbance simulator and variable transformer are used for all testing. These two units are, when used together, capable of simulating mains voltage variations between 0 and 100% for periods up to 100 seconds in duration in accordance with the IEC/EN 61000-4-11 basic EMC standard.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the company's specifications. An appendix of this report contains the list of test equipment used and calibration information.

IMMUNITY TEST PROCEDURES

EQUIPMENT PLACEMENT

The basic standards for evaluating immunity to electrostatic discharges specify that a tabletop EUT shall be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement. For tabletop equipment, a 1.6 by 0.8 meter metal sheet is placed on the table and connected to the ground plane via a metal strap with two 470-kOhm resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material.

The basic standards for evaluating immunity to radiated electric fields specify that a tabletop EUT be placed on a non-conducting table 80 centimeters high and that floor-mounted equipment may be mounted on non-conductive supports 0.05 to 0.15 m high. During the tests, the EUT is positioned in a shielded anechoic test chamber to reduce reflections from the internal surfaces of the chamber.

The basic standards for evaluating immunity electrically fast transient bursts specify that the EUT and attached cables be placed on an insulating support 10 centimeters above a ground reference plane. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to surge transients do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

The basic standards for evaluating immunity to conducted rf disturbances specify that the EUT be placed on an insulating support 10 centimeters above a ground reference plane and that the attached cables be maintained between 30 and 50 millimeters above this plane where possible. During the tests, the EUT was positioned on a table with a ground reference plane or on the floor in conformance with this requirement.

The basic standards for evaluating immunity to voltage dips and interruptions do not specify positioning of the EUT. The EUT was therefore placed on a table or on the floor.

APPLICATION OF ELECTROSTATIC DISCHARGES

The points of application of the test discharges directly to the EUT are determined after consideration of the parts of the EUT that are accessible to the operator during normal operation. Contact and air discharges are applied to the EUT, contact discharges to conducting surfaces and air-gap discharges to insulating surfaces. Contact discharges are also applied to the coupling planes to simulate nearby ESD events.

APPLICATION OF ELECTROMAGNETIC FIELD

The electromagnetic field is established at the front edge of the EUT.

The frequency range is swept through the frequency range of the test using a power level necessary to obtain the required field strength at the EUT. The field is amplitude modulated using a 1 kHz sine wave to a depth of 80% for the swept frequency test in accordance with the applicable basic standard(s).

The test is repeated with each of the four sides of the EUT facing the field-generating antenna. For small, portable products the test is also performed with the top and bottom sides of the EUT facing the antenna.

APPLICATION OF ELECTRICAL FAST TRANSIENTS

The application of the test voltage to the EUT is made to the cable connected to the power port under test via discrete capacitors and through a capacitive coupling clamp in the case of cables connected to signal ports.

APPLICATION OF SURGES

The application of the surge to the EUT's AC or DC power port is made to the power cable attached to the unit via the coupling/decoupling network within the surge generator.

For coupling to unshielded signal lines a coupling network is used to give the correct coupling path (resistor and capacitor/spark gap) to the line under test. Coupling to shielded signal lines is made directly to the shield at the far end of the cable, with the cable length set to the shorter of 20 m or the maximum specified cable length. Whenever possible a decoupling network is placed in series with the I/O line under test and the support equipment to ensure that any susceptibility observed is due to the EUT and not the support equipment. Decoupling networks are not available for high-speed signal lines.

APPLICATION OF CONDUCTED INTERFERENCE

The application of the test voltage to the EUT is made through either a coupling decoupling network (CDN), by direct injection, or through an inductive coupling clamp as appropriate to the cable being tested. The frequency range is swept from 0.15 to 80 MHz using a power level necessary to obtain the specified interference voltage.

APPLICATION OF VOLTAGE VARIATIONS

The applications of the variations in mains voltage to the EUT are made through the AC power cable attached to the unit.

Appendix A Test Equipment Calibration Data

Harmonics and Flicke	r, 04-Apr-12 and 11-Apr-12			
Manufacturer California Instruments	Description Harmonics & Flicker test System	<u>Model</u> 5001ix , AC Power	<u>Asset #</u> 2157	<u>Cal Due</u> 7/13/2012
California Instruments	Harmonics & Flicker Power Unit	Source PACS-1	2158	7/13/2012
Conducted Emissions	s - AC Power Ports, 12-Apr-12			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1401	4/21/2012
Fischer Custom Comm.	LISN, 50uH, 25 Amps, Dual Line	FCC-LISN-50/250- 25-2-01	1575	2/16/2013
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/25/2012
Fischer Custom	LISN, 25A, 150kHz to 30MHz,	FCC-LISN-50-25-2-	2000	10/18/2012
Comm	25 Amp,	09	0004	0/45/0040
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2- 09	2001	2/15/2013
Comm	23 Amp,	09		
-	30 - 15,000 MHz, 14-Apr-12			
Manufacturer	Description	Model	<u>Asset #</u>	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
Sunol Sciences Hewlett Packard	Biconilog, 30-3000 MHz Microwave Preamplifier, 1-	JB3 8449B	1548 2199	6/24/2012 2/23/2013
newiell Fackalu	26.5GHz	0449D	2199	2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Hewlett Packard	9KHz-1300MHz pre-amp	8447F	2328 CG0177	3/16/2013
	CISPR22 HF, 1000 - 6,000 MHz, 15		A #	
<u>Manufacturer</u> EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz (SA40-Red)	<u>Model</u> 3115	<u>Asset #</u> 1142	<u>Cal Due</u> 8/2/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2013
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
		Awa 40		
Manufacturer	 Telecommunications Ports, 14 Description 	-Apr-12 Model	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1594	5/17/2012
Fischer Custom	LISN, 25A, 150kHz to 30MHz,	FCC-LISN-50-25-2-	2000	10/18/2012
Comm Fischer Custom	25 Amp, LISN, 25A, 150kHz to 30MHz,	09 FCC-LISN-50-25-2-	2001	2/15/2013
Comm Fischer Custom	25 Amp, FCC-TLISN-T8-02 (Includes	09 FCC-TLISN-T8-02-	2182	7/26/2013
Comm.	2183)	09	2102	1/20/2013
	- /			

Padiated Immunity 8	0 - 1,000 MHz, 13-Apr-12			
Manufacturer	Description	Model	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1 uW-100 mW,	NRV-Z51	<u>1070</u>	5/25/2012
	DC-18 GHz, 50ohms			0/20/2012
Amplifier Research	Field Probe, RF, 10 KHz - 1GHz	FP4000	1430	8/31/2012
Werlatone	Directional Coupler, 0.1-1000	C6021	1533	N/A
	MHz, 40dB, 500w			
Instruments For	IFI Amplifier 80 - 1000 MHz	CMC-200	1546	N/A
Industry	(200W CW)			
ETS Lindgren	Biconilog Antenna 26 MHz - 3	3140B	1775	N/A
	GHz, Radiated Immunity Only			
Rohde & Schwarz	Power Meter, Dual Channel, DC	NRVD	1787	1/5/2013
	to 40 GHz, 100 pW to 30 W, 9			
	kHz to 3 GHz, 200µV to 1000V			
Agilent	MXG Analog Signal Generator	N5181A	2146	1/27/2013
VDI 16 Apr 12				
VDI, 16-Apr-12 Manufacturer	Description	Modol	Accot #	Cal Due
Fluke Mfg. Inc.	Fluke Mulitmeter, True RMS	<u>Model</u> 175	<u>Asset #</u> 1447	7/14/2012
EM Test AG	VDI Generator	UCS 500 M6	1585	7/19/2012
Emiliestics	VDI Generator		1000	1/10/2012
EFT, 16-Apr-12				
Manufacturer	Description	Model	Asset #	Cal Due
Amplifier Research	EFT/B Capacitive Coupling	EM Test / C	1583	N/A
•	clamp	ClampHFK		
EM Test AG	EFT Generator	UCS 500 M6	1585	7/22/2012
FCC	Decoupling Network	F-203I-DCN-23mm	2457	N/A
	(IEC/EN/KN 61000-4-6), 17-Apr-12			
Manufacturer	Description	Model	Asset #	Cal Due
Manufacturer Rohde & Schwarz	Description Signal Generator, 9 kHz-1.04 GHz	SMY01	168	11/4/2012
Manufacturer Rohde & Schwarz Instruments For	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01-			
Manufacturer Rohde & Schwarz Instruments For Industry	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz	SMY01 M75	168 1295	11/4/2012 7/1/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB	SMY01 M75 100-SA-FFN-06	168 1295 1397	11/4/2012 7/1/2012 11/10/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz	SMY01 M75	168 1295	11/4/2012 7/1/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM	168 1295 1397 1566	11/4/2012 7/1/2012 11/10/2012 10/4/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB	SMY01 M75 100-SA-FFN-06	168 1295 1397	11/4/2012 7/1/2012 11/10/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A	168 1295 1397 1566 1578	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM	168 1295 1397 1566	11/4/2012 7/1/2012 11/10/2012 10/4/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A	168 1295 1397 1566 1578 1579	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A	168 1295 1397 1566 1578	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A	168 1295 1397 1566 1578 1579 1581	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A	168 1295 1397 1566 1578 1579	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A	168 1295 1397 1566 1578 1579 1581	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm.	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A	168 1295 1397 1566 1578 1579 1581	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Rohde & Schwarz	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A NRVD	168 1295 1397 1566 1578 1579 1581 1786	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012 2/24/2013
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Rohde & Schwarz FCC ESD, 17-Apr-12	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Decoupling Network	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A NRVD F-203I-DCN-23mm	168 1295 1397 1566 1578 1579 1581 1786 2457	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012 2/24/2013 N/A
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Rohde & Schwarz FCC ESD, 17-Apr-12 Manufacturer	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Decoupling Network	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A NRVD F-203I-DCN-23mm Model	168 1295 1397 1566 1578 1579 1581 1786 2457 Asset #	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012 2/24/2013 N/A Cal Due
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Rohde & Schwarz FCC ESD, 17-Apr-12	DescriptionSignal Generator, 9 kHz-1.04GHzAmplifier, Wideband, 0.01-230MHzAttenuator, 100 Watt ,6 dBEM Clamp 10 KHz - 1 GHzM3 Network, 150 kHz-230 MHzM3 Network, 150 kHz-230 MHzM3 Network, 150 kHz-230 MHzM3 Network, 150 kHz-230 MHzPower Meter, Dual Channel, DCto 40 GHz, 100 pW to 30 W, 9kHz to 3 GHz, 200µV to 1000VDecoupling NetworkDescriptionESD, Vertical Plane, 19-3/4 x 19-	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A F-203I-DCN-23mm Model ESD, VP, 19-3/4 x	168 1295 1397 1566 1578 1579 1581 1786 2457	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012 2/24/2013 N/A
Manufacturer Rohde & Schwarz Instruments For Industry Bird Electronics Corp. Fischer Custom Comm. Fischer Custom Comm. Fischer Custom Comm. Rohde & Schwarz FCC ESD, 17-Apr-12 Manufacturer	Description Signal Generator, 9 kHz-1.04 GHz Amplifier, Wideband, 0.01- 230MHz Attenuator, 100 Watt ,6 dB EM Clamp 10 KHz - 1 GHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz M3 Network, 150 kHz-230 MHz Power Meter, Dual Channel, DC to 40 GHz, 100 pW to 30 W, 9 kHz to 3 GHz, 200µV to 1000V Decoupling Network	SMY01 M75 100-SA-FFN-06 F-203I-32MM FCC-801-M3-25A FCC-801-M3-25A FCC-801-M3-25A NRVD F-203I-DCN-23mm Model	168 1295 1397 1566 1578 1579 1581 1786 2457 Asset #	11/4/2012 7/1/2012 11/10/2012 10/4/2012 5/13/2012 5/13/2012 5/16/2012 2/24/2013 N/A Cal Due

Surge , 17-Apr-12				
Manufacturer	Description	Model	Asset #	Cal Due
KeyTek	ECAT - Short Stack, EClass Series 100	ECAT Control Center	1789	5/10/2012
KeyTek	ECAT - Short Stack, Mains (Surge) Coupler/Decoupler 8kV max	E4554KV, ECAT	1819	3/11/2013

Appendix B Test Data

AC current harmonics test data and voltage fluctuations test data are contained in separate appendices of this report.

T87058 Pages 33 - 93

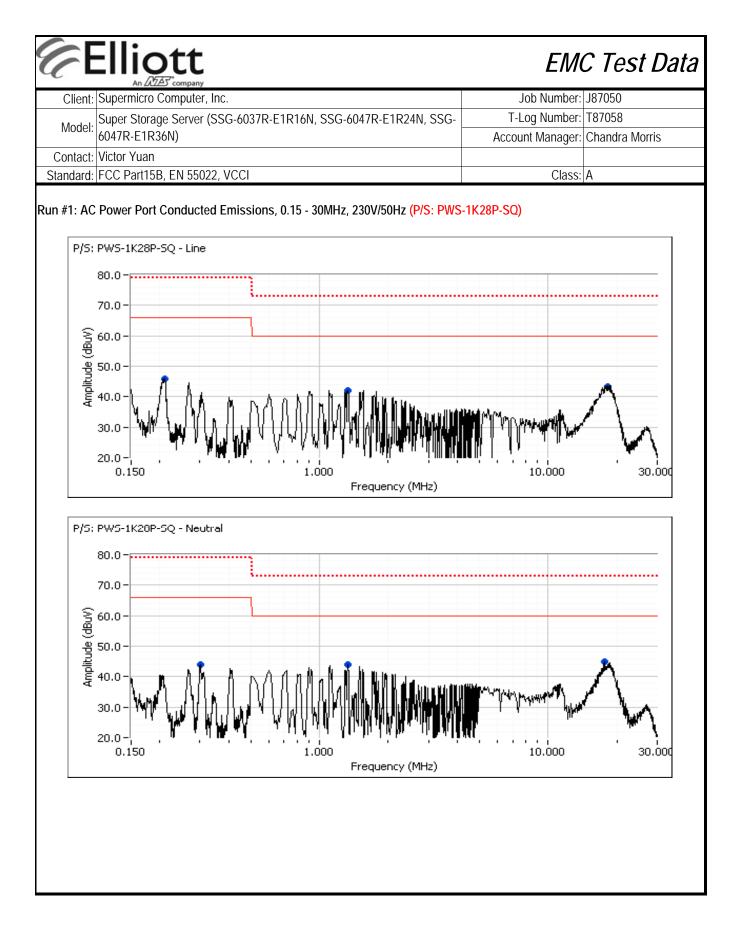
6 El	liott
	no PTAT commence

EMC Test Data

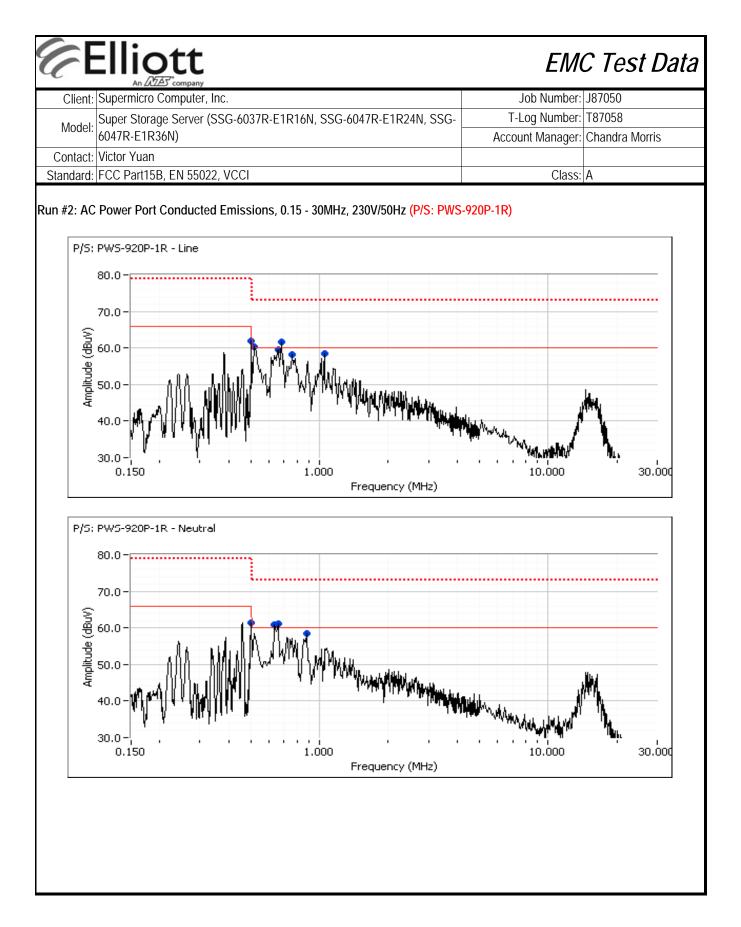
2 combauli		
Supermicro Computer, Inc.	Job Number:	J87050
Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Victor Yuan		
FCC Part15B, EN 55022, VCCI	Class:	A
EN 55024	Environment:	
	Supermicro Computer, Inc. Super Storage Server (SSG-6037R-E1R16N, SSG- 6047R-E1R24N, SSG-6047R-E1R36N) Victor Yuan FCC Part15B, EN 55022, VCCI	Supermicro Computer, Inc.Job Number:Super Storage Server (SSG-6037R-E1R16N, SSG- 6047R-E1R24N, SSG-6047R-E1R36N)T-Log Number:6047R-E1R24N, SSG-6047R-E1R36N)Account Manager:Victor YuanFCC Part15B, EN 55022, VCCIClass:

EMC Test Data

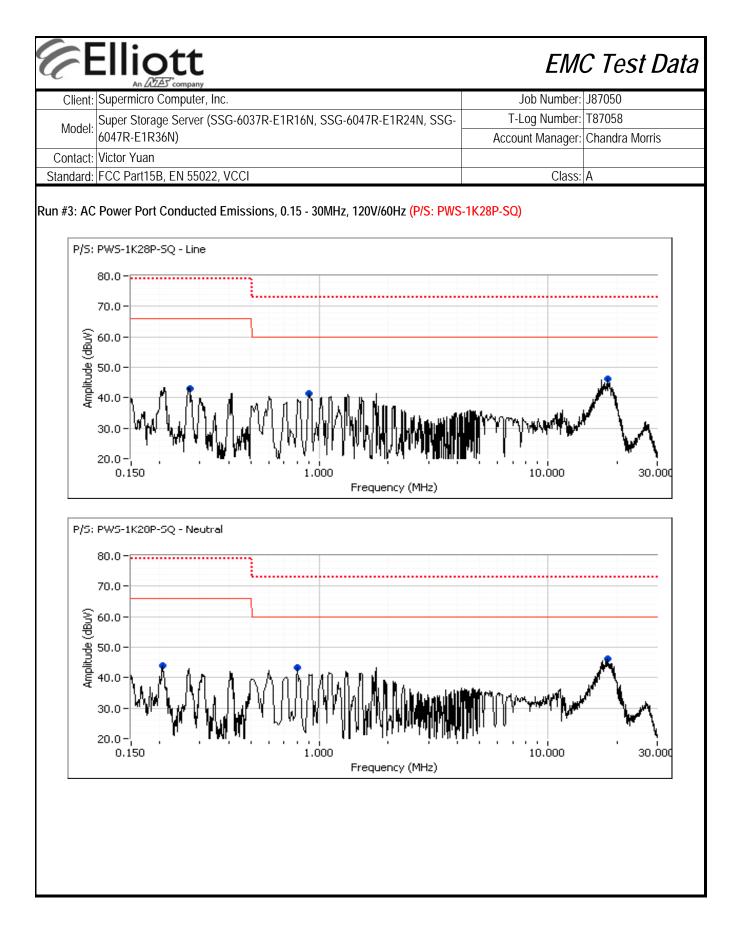
For The

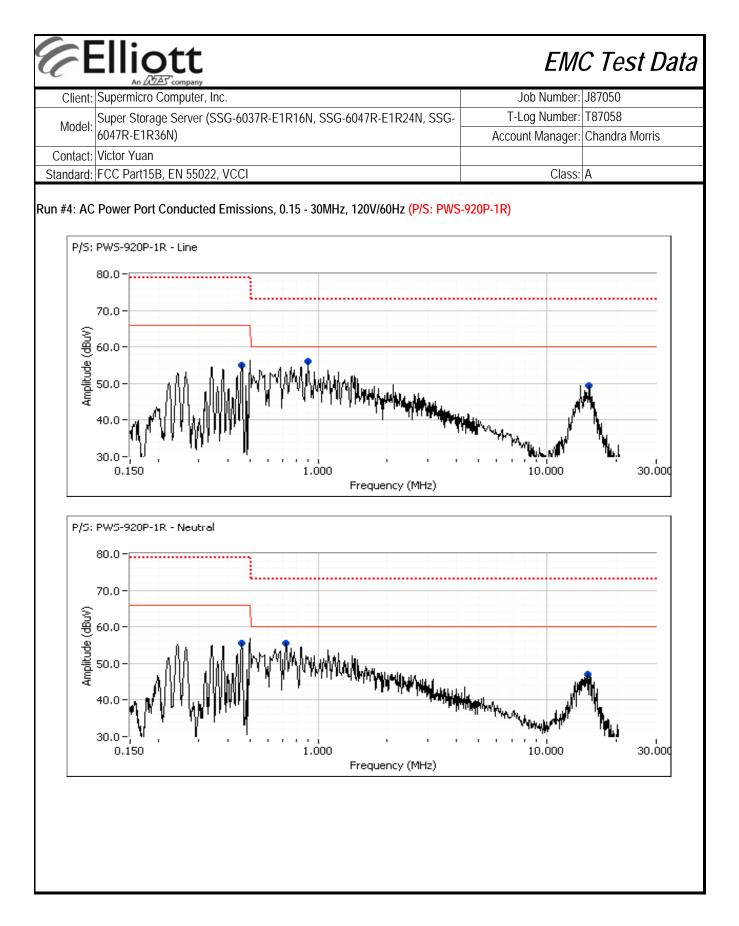

Supermicro Computer, Inc.

Model


Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)

Date of Last Test: 4/17/2012


Computer, Inc.			L.L.N.	107050
0 (000 (000 = = = = = = = = = = = = = =			Job Number:	
ige Server (SSG-6037R-E1R16N, SSG- 36N)	-6047R-E1R24N, SSG-		-Log Number:	
30IV)		ACCO	ount Manager:	Chandra Morris
			Class [.]	А
Is The objective of this test session is to p specification listed above. 4/12/2012 Alika Hirano Fremont Chamber #7 guration the EUT was located on a wooden table A second LISN was used for all loca	perform final qualification Config. Used: Config Change: EUT Voltage: e inside the semi-anechoi I support equipment.	testing of 1 None 120V/60Hz	the EUT with r	
Rel. Humidity:	35 %			
Test Performed	Limit	Result	Margin	
i est i chonned		Pass	36.8 dBµV (@ 0.301 MHz
CE, AC Power, 230V/50Hz	Class A	1 435	(-29.2 dB)	
	Class A Class A	Pass	(-29.2 dB) 53.1 dBµV ((-6.9 dB)	@ 0.679 MHz
CE, AC Power, 230V/50Hz			(-29.2 dB) 53.1 dBµV ((-6.9 dB) 34.3 dBµV ((-25.7 dB)	
	<i>(Elliott Laboratories Fremo)</i> Is The objective of this test session is to p specification listed above. 4/12/2012 Alika Hirano Fremont Chamber #7 guration the EUT was located on a wooden table A second LISN was used for all loca s: Temperature:	Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechanics) Is The objective of this test session is to perform final qualification specification listed above. 4/12/2012 Config. Used: Alika Hirano Alika Hirano Config Change: Fremont Chamber #7 Eur Voltage: EUT Voltage: guration the EUT was located on a wooden table inside the semi-anechol. A second LISN was used for all local support equipment. is: Temperature: 18 °C Rel. Humidity: 35 %	Conducted Emissions <i>(Elliott Laboratories Fremont Facility, Semi-Anechoic Cham.</i> Is The objective of this test session is to perform final qualification testing of specification listed above. 4/12/2012 Config. Used: 1 Alika Hirano Config Change: None Fremont Chamber #7 EUT Voltage: 120V/60Hz guration the EUT was located on a wooden table inside the semi-anechoic chamber . A second LISN was used for all local support equipment. . Temperature: 18 °C . Rel. Humidity: 35 %	Conducted Emissions (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) Is The objective of this test session is to perform final qualification testing of the EUT with r specification listed above. 4/12/2012 Config. Used: 1 Alika Hirano Config Change: None Fremont Chamber #7 EUT Voltage: 120V/60Hz guration the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a second LISN was used for all local support equipment. (s: Temperature: 18 °C Rel. Humidity: 35 %


	: Supermicro Computer, Inc.						Job Number:	J87050
	Super Stora	ge Server (S	SG-6037R-F	1R16N. SS(G-6047R-F1	R24N, SSG-	T-Log Number:	T87058
Model	6047R-E1R				5 00 M EI	112 III, 000	Account Manager:	
Contact	Victor Yuan						necount manager.	
		B, EN 55022	VCCI				Class:	Δ.
Stanuaru	FUC Pallio	D, EN DOUZZ					Class.	A
roliminar	u noak roadii	nas conturo	during pro	scan (noak	roadings v	s. average limit	١	
requency		AC		ss A	Detector	Comments	/	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.210	45.9	Line 1	66.0	-20.1	Peak			
1.332	42.1	Line 1	60.0	-17.9	Peak			
18.339	43.3	Line 1	60.0	-16.7	Peak			
0.301	43.9	Neutral	66.0	-22.1	Peak			
1.322	43.9	Neutral	60.0	-16.1	Peak			
17.681	45.0	Neutral	60.0	-15.0	Peak			
inal quas	-peak and a	verage readi	nas					
requency		AC	Cla	ss A	Detector	Comments		
Frequency MHz	Level dBµV	AC Line	Cla: Limit	Margin	QP/Ave			
Frequency MHz 0.301	Level dBµV 36.8	AC Line Neutral	Clas Limit 66.0	Margin -29.2	QP/Ave AVG	AVG (0.10s)		
requency MHz 0.301 1.332	Level dBµV 36.8 30.7	AC Line Neutral Line 1	Cla: Limit 66.0 60.0	Margin -29.2 -29.3	QP/Ave AVG AVG	AVG (0.10s) AVG (0.10s)		
Frequency MHz 0.301 1.332 0.210	Level dBµV 36.8 30.7 35.9	AC Line Neutral Line 1 Line 1	Cla: Limit 66.0 60.0 66.0	Margin -29.2 -29.3 -30.1	QP/Ave AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 0.301 1.332 0.210 1.322	Level dBµV 36.8 30.7 35.9 29.6	AC Line Neutral Line 1 Line 1 Neutral	Cla: Limit 66.0 60.0 66.0 60.0	Margin -29.2 -29.3 -30.1 -30.4	QP/Ave AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
requency MHz 0.301 1.332 0.210 1.322 17.681	Level dBµV 36.8 30.7 35.9 29.6 29.1	AC Line Neutral Line 1 Line 1 Neutral Neutral	Cla: Limit 66.0 60.0 66.0 60.0 60.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9	QP/Ave AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 0.301 1.332 0.210 1.322 17.681 18.339	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8	AC Line Neutral Line 1 Line 1 Neutral Neutral Line 1	Cla: Limit 66.0 60.0 66.0 60.0 60.0 60.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2	QP/Ave AVG AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
Frequency MHz 0.301 1.332 0.210 1.322 17.681 18.339 1.322	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8 41.5	AC Line Line 1 Line 1 Neutral Neutral Line 1 Neutral	Cla: Limit 66.0 60.0 66.0 60.0 60.0 60.0 73.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2 -31.5	QP/Ave AVG AVG AVG AVG AVG AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
Frequency MHz 0.301 1.332 0.210 1.322 17.681 18.339 1.322 1.332	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8 41.5 40.6	AC Line Line 1 Line 1 Neutral Neutral Line 1 Neutral Line 1	Cla: Limit 66.0 60.0 66.0 60.0 60.0 60.0 73.0 73.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2 -31.5 -32.4	QP/Ave AVG AVG AVG AVG AVG QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s)		
Trequency MHz 0.301 1.332 0.210 1.322 17.681 18.339 1.322 1.332 1.332	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8 41.5 40.6 40.2	AC Line Neutral Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Line 1	Cla: Limit 66.0 60.0 66.0 60.0 60.0 60.0 73.0 73.0 73.0 73.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2 -31.5 -32.4 -32.8	QP/Ave AVG AVG AVG AVG AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.301 1.332 0.210 1.322 17.681 18.339 1.322 1.332 1.339 1.322 1.332 1.332	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8 41.5 40.6 40.2 40.2	AC Line Neutral Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Neutral Line 1	Cla: Limit 66.0 60.0 60.0 60.0 60.0 73.0 73.0 73.0 73.0 73.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2 -31.5 -32.4 -32.8 -32.8	QP/Ave AVG AVG AVG AVG AVG AVG QP QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)		
Frequency MHz 0.301 1.332 0.210 1.322 17.681 18.339 1.322 1.332 1.332	Level dBµV 36.8 30.7 35.9 29.6 29.1 28.8 41.5 40.6 40.2	AC Line Neutral Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Line 1	Cla: Limit 66.0 60.0 66.0 60.0 60.0 60.0 73.0 73.0 73.0 73.0	Margin -29.2 -29.3 -30.1 -30.4 -30.9 -31.2 -31.5 -32.4 -32.8	QP/Ave AVG AVG AVG AVG AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		

6	Ellic						EM	C Test L
Client		Computer, Ir	IC.				Job Number:	J87050
	Super Stora	ige Server (S		1R16N_SS(G-6047R-F1	R24N_SSG-	T-Log Number:	T87058
Model	6047R-E1R	•	00 000/111		5 00 MR ET	112 111, 5555	Account Manager:	
Contact	: Victor Yuan	,					necount manager.	
		B, EN 55022	VCCI				Class:	Δ.
Stanuaru		D, EN 33022	, VUUI				Class.	A
roliminar	v noak roadi	nas canturo	d during pro	scan (noal	roadings v	vs. average limi	+)	
Frequency		AC		ss A	Detector	Comments	U	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.500	61.9	Line 1	66.0	-4.1	Peak			
0.522	60.4	Line 1	60.0	0.4	Peak			
0.658	59.6	Line 1	60.0	-0.4	Peak			
0.679	61.7	Line 1	60.0	1.7	Peak			
0.761	58.2	Line 1	60.0	-1.8	Peak			
1.047	58.4	Line 1	60.0	-1.6	Peak			
0.500	61.3	Neutral	66.0	-4.7	Peak			
0.642	60.8	Neutral	60.0	0.8	Peak			
0.658	61.2	Neutral	60.0	1.2	Peak			
0.877	58.5	Neutral	60.0	-1.5	Peak			
		verage read						
requency		AC		ss A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	A) (C (0 10-)		
0.679	53.1	Line 1	60.0	-6.9	AVG	AVG (0.10s)		
0.642	52.5 52.1	Neutral	60.0 60.0	-7.5 -7.9	AVG AVG	AVG (0.10s) AVG (0.10s)		
0.522	52.1	Line 1 Line 1	60.0	-7.9 -8.2	AVG	AVG (0.105) AVG (0.105)		
0.658	51.7	Neutral	60.0	-8.3	AVG	AVG (0.10s) AVG (0.10s)		
0.658	51.6	Line 1	60.0	-8.4	AVG	AVG (0.10s) AVG (0.10s)		
0.500	54.7	Neutral	66.0	-0.4	AVG	AVG (0.103) AVG (0.10s)		
0.679	61.6	Line 1	73.0	-11.4	QP	QP (1.00s)		
0.500	54.1	Line 1	66.0	-11.9	AVG	AVG (0.10s)		
0.642	59.5	Neutral	73.0	-13.5	QP	QP (1.00s)		
	59.5	Neutral	73.0	-13.5	QP	QP (1.00s)		
0.658	59.4	Line 1	73.0	-13.6	QP	QP (1.00s)		
0.658 0.658	46.0	Neutral	60.0	-14.0	AVG	AVG (0.10s)		
	40.0	Line 1	73.0	-14.3	QP	QP (1.00s)		
0.658	48.0 58.7			-15.2	AVG	AVG (0.10s)		
0.658 0.877		Line 1	60.0	-10.Z				
0.658 0.877 0.522	58.7		60.0 73.0	-15.6	QP	QP (1.00s)		
0.658 0.877 0.522 1.047	58.7 44.8	Line 1			QP QP	QP (1.00s) QP (1.00s)		
0.658 0.877 0.522 1.047 0.761	58.7 44.8 57.4	Line 1 Line 1	73.0	-15.6		· · · /		
0.658 0.877 0.522 1.047 0.761 0.500	58.7 44.8 57.4 62.1	Line 1 Line 1 Neutral	73.0 79.0	-15.6 -16.9	QP	QP (1.00s)		

CIICIII	Supermicro	Computer, Ir	IC.				Job Number:	J87050
	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-						T-Log Number:	T87058
Model	6047R-E1R						Account Manager:	
Contact	Victor Yuan	,						
	FCC Part15	B EN 55022	VCCI				Class:	Δ
Standard	1 00 T ditto	D, EN 00022	, 1001				01035	/ · · · · · · · · · · · · · · · · · · ·
Preliminary	v peak readii	nas capture	d durina pre	e-scan (peak	readings v	vs. average limit)	
Frequency		AC		ss A	Detector	Comments	/	
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.271	42.9	Line 1	66.0	-23.1	Peak			
0.898	41.3	Line 1	60.0	-18.7	Peak			
18.140	46.1	Line 1	60.0	-13.9	Peak			
0.206	43.8	Neutral	66.0	-22.2	Peak			
0.798	40.0	Maudual	60.0	-16.7	Peak			
0.798	43.3	Neutral	00.0	-10.7	TEak			
0.798 18.198	43.3 46.1	Neutral	60.0	-13.9	Peak			
18.198	46.1	Neutral	60.0					
18.198 inal quasi	46.1 -peak and a	Neutral verage readi	60.0	-13.9	Peak			
18.198 inal quast requency	46.1 -peak and a Level	Neutral verage readi AC	60.0 i ngs Clas	-13.9 ss A	Peak Detector	Comments		
18.198 inal quasi Frequency MHz	46.1 -peak and a Level dBµV	Neutral verage readi AC Line	60.0 i ngs Cla: Limit	-13.9 ss A Margin	Peak Detector QP/Ave			
18.198 inal quas requency MHz 0.798	46.1 -peak and a Level dBµV 34.3	Neutral verage readi AC Line Neutral	60.0 ings Cla: Limit 60.0	-13.9 ss A <u>Margin</u> -25.7	Peak Detector QP/Ave AVG	AVG (0.10s)		
18.198 inal quast requency MHz 0.798 18.198	46.1 -peak and a Level dBμV 34.3 33.3	Neutral verage readi AC Line Neutral Neutral	60.0 ings Limit 60.0 60.0	-13.9 ss A Margin -25.7 -26.7	Peak Detector QP/Ave AVG AVG	AVG (0.10s) AVG (0.10s)		
18.198 inal quast requency MHz 0.798 18.198 0.898	46.1 -peak and a Level dBμV 34.3 33.3 33.1	Neutral AC Line Neutral Neutral Line 1	60.0 ings Limit 60.0 60.0 60.0	-13.9 ss A Margin -25.7 -26.7 -26.9	Peak Detector QP/Ave AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3	Neutral AC Line Neutral Neutral Line 1 Line 1	60.0 ings Limit 60.0 60.0 60.0 60.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7	Peak Detector QP/Ave AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6	Neutral AC Line Neutral Neutral Line 1 Line 1 Neutral	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7 -28.4	Peak Detector QP/Ave AVG AVG AVG AVG AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206 18.198	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6 42.1	Neutral AC Line Neutral Neutral Line 1 Line 1 Neutral Neutral	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0 73.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7 -28.4 -30.9	Peak Detector QP/Ave AVG AVG AVG AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206 18.198 0.271	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6 42.1 34.5	Neutral AC Line Neutral Neutral Line 1 Line 1 Neutral Neutral Line 1	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0 73.0 66.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7 -28.4 -30.9 -31.5	Peak Detector QP/Ave AVG AVG AVG AVG AVG QP AVG	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) AVG (0.10s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206 18.198 0.271 0.798	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6 42.1 34.5 41.5	Neutral AC Line Neutral Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0 73.0 66.0 73.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7 -28.4 -30.9 -31.5 -31.5	Peak Detector QP/Ave AVG AVG AVG AVG QP AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206 18.198 0.271 0.798 18.140	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6 42.1 34.5 41.5 41.2	Neutral AC Line Neutral Neutral Line 1 Line 1 Neutral Neutral Line 1 Neutral Line 1 Line 1	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0 73.0 66.0 73.0 73.0 73.0	-13.9 ss A Margin -25.7 -26.7 -26.7 -26.9 -27.7 -28.4 -30.9 -31.5 -31.5 -31.5 -31.8	Peak Detector QP/Ave AVG AVG AVG AVG QP QP QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		
18.198 inal quasi requency MHz 0.798 18.198 0.898 18.140 0.206 18.198 0.271 0.798	46.1 -peak and a Level dBμV 34.3 33.3 33.1 32.3 37.6 42.1 34.5 41.5	Neutral AC Line Neutral Line 1 Line 1 Line 1 Neutral Neutral Line 1 Neutral	60.0 ings Limit 60.0 60.0 60.0 60.0 66.0 73.0 66.0 73.0	-13.9 ss A Margin -25.7 -26.7 -26.9 -27.7 -28.4 -30.9 -31.5 -31.5	Peak Detector QP/Ave AVG AVG AVG AVG QP AVG QP	AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)		

Client	Supermicro	Computer, Ir	IC.				Job Number:	J87050
	Super Storage Server (SSG-6037R-E1R16N_SSG-6047R-E1R24N_SSG-				R24N, SSG-	T-Log Number:	T87058	
Model	6047R-E1R				5 00 1111 21		Account Manager:	
Contact	Victor Yuan	,					, looodint manageri	
	FCC Part15		VCCI				Class:	٨
Stanuaru		D, LN 33022	, 0001				01035.	Π
Preliminar	v neak readi	nas canture	d durina nre	-scan (neak	readings v	vs. average limit)	
Frequency	<u></u>	AC		ss A	Detector	Comments)	
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.462	55.1	Line 1	66.0	-10.9	Peak	1		
0.898	56.0	Line 1	60.0	-4.0	Peak			
15.294	49.4	Line 1	60.0	-10.6	Peak			
0.461	55.5	Neutral	66.0	-10.5	Peak			
0.721	55.6	Neutral	60.0	-4.4	Peak			
15.080	46.9	Neutral	60.0	-13.1	Peak			
	i-peak and a	T U				1		
Frequency		AC		ss A	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.721	48.1	Neutral	60.0	-11.9	AVG	AVG (0.10s)		
0.898	47.7	Line 1	60.0	-12.3	AVG	AVG (0.10s)		
0.461	51.8	Neutral	66.0	-14.2	AVG	AVG (0.10s)		
0.462	49.9	Line 1	66.0	-16.1	AVG	AVG (0.10s)		
0.721	54.0	Neutral	73.0	-19.0	QP	QP (1.00s)		
0.898	53.3 55.1	Line 1	73.0	-19.7 -23.9	QP QP	QP (1.00s) QP (1.00s)		
15.080	35.4	Neutral Neutral	79.0 60.0	-23.9 -24.6	AVG	AVG (0.10s)		
15.080	35.4	Line 1	60.0	-24.6 -25.2	AVG	· · · ·		
0.462	34.8 53.2		79.0		AVG QP	AVG (0.10s)		
	53.2 44.1	Line 1 Neutral	79.0	-25.8 -28.9	QP QP	QP (1.00s) QP (1.00s)		
15 000		Line 1	73.0	-28.9 -29.2	QP QP	QP (1.00s) QP (1.00s)		
15.080 15.294	43.8				• • • • •			

(CE	Elliott An DES company	EM	C Test Data
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Madal	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058
wouer.	6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А

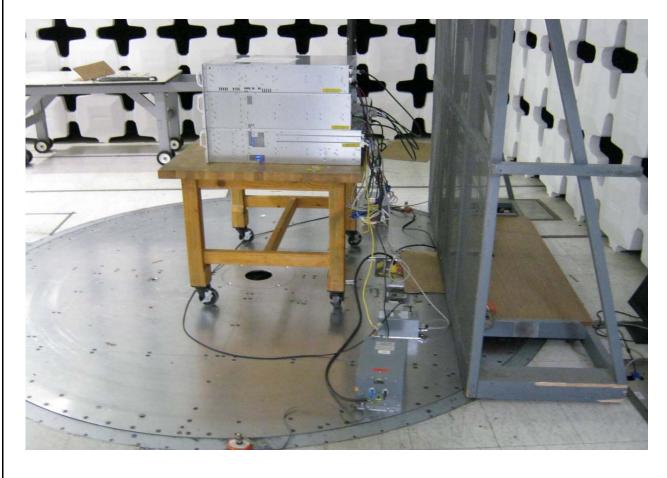
Test Configuration Photograph #1 (Conducted Emissions - Power Port)

(7 E	Elliott An AZAS' company	EM	C Test Data
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Madal	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058
would.	6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А

Test Configuration Photograph #2 (Conducted Emissions - Power Port)

Ellic	ott			EM	C Test Data
Client: Supermicro	Computer Inc		lc	b Number:	
	ge Server (SSG-6037R-E1R16N, SSG-	6047R-E1R24N, SSG-	T-Lo	g Number:	
Contact: Victor Yuan	,	ACCOUN			
Standard: FCC Part15	B, EN 55022, VCCI			Class:	A
	Conducted Em	issions - Signal	Ports		
Test Specific Detai					
Objective:	The objective of this test session is to p specification listed above.	perform final qualification	n testing of the	EUT with	respect to the
Test Engineer:	4/14/2012 13:32 Chris Groat Fremont Chamber #4	Config. Used: Config Change: EUT Voltage:	none		
General Test Confi	guration				
local support equipment. connections running on t For conducted current er 1 meter from the EUT. T	a wooden table, 40 cm from a vertical Remote support equipment was locate op of the groundplane. missions on shielded signal and data lea he shield was terminated to the ground and the support equipment.	ed approximately 30 met ads, a current probe was	ers away from s placed aroun	the test ar d the interf	ea, with all I/O ace cable approximately
For conducted voltage e under test and 80 cm fro	missions on unshielded signal and data m the device under test. Where no suit ie common-mode voltage and current o	able ISN was available,	a capacitive v	oltage prob	
Ambient Condition	-	21 °C			
	Rel. Humidity:	34 %			
Summary of Result	S				
Run #	Test Performed	Limit	Result		Margin
1	CE, Ethernet Port	Class A	Pass	63.9 c	lBμV @ 1.763 MHz (-10.1 dB)
Modifications Made	e During Testing ade to the EUT during testing				
Deviations From TI No deviations were mad	ne Standard e from the requirements of the standard	l.			

) tt [*] company					EM	C Test Data
Client:	Supermicro	Computer, In	IC.				Job Number:	J87050
	Super Stora	ge Server (S	SG-6037R-E		G-6047R-E1I	R24N, SSG-	T-Log Number:	T87058
Model:	6047R-E1R					·	Account Manager:	Chandra Morris
Contact:	Victor Yuan			3				
		B, EN 55022,	VCCI				Class:	Α
Port LAN LAN Loadin	Under Test: Data Rate: Utilization: g software:	Ethernet Ethernet 10/100Mb/s 100% for 10 Burn-In Dia es on both si) seconds gnostic Sof		30.0 MHz			
	ISN	Туре	C	Cable Catego	ry		ISN specificati	on
		2-wire		Uncategoriz			CISPR 22 Edition 3 / EN	
		4-wire	Х	Category 5		Х	CISPR 22 Edition 4 / Edi	tion 5
	Х	8-wire		Category 6				
Amplitude (dBuV)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 -	<u>م</u> . ۸.	, Aurvi	nMad	In the second	WWW.mah.	ada Maa	
Amp	30.0 - 20.0 - 10.0 - 0.150	/ \JJ/ \J		1.000	r Frequenc	cy (MHz)	10.000	30.000
Preliminary	30.0 - 20.0 - 10.0 - 0.150	ngs captured		e-scan (peak	readings v	s. average li		30.000
Preliminary Frequency	30.0 - 20.0 - 10.0 - 0.150 peak readin Level	Port	Cla	e- scan (peak ss A	readings v Detector			' 30.000
reliminary Frequency MHz	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV	Port Name	Cla: Limit	e- scan (peak ss A Margin	c readings v Detector QP/Ave	s. average li		30,000
Preliminary Frequency MHz 1.763	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV 63.6	Port Name Ethernet	Cla: Limit 74.0	e- scan (peak ss A Margin -10.4	readings v Detector QP/Ave Peak	s. average li		30.000
reliminary Frequency MHz 1.763 1.176	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV 63.6 52.5	Port Name Ethernet Ethernet	Cla: Limit 74.0 74.0	e-scan (peak ss A Margin -10.4 -21.5	readings v Detector QP/Ave Peak Peak	s. average li		30.000
reliminary Frequency MHz 1.763 1.176 0.588	30.0 - 20.0 - 10.0 - 0.150 7 peak readin Level dBµV 63.6 52.5 53.2	Port Name Ethernet Ethernet Ethernet	Cla: Limit 74.0 74.0 74.0 74.0	e- scan (peak ss A Margin -10.4	readings v Detector QP/Ave Peak	s. average li		30.000
reliminary Trequency MHz 1.763 1.176 0.588 inal quasi	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV 63.6 52.5 53.2 -peak and a	Port Name Ethernet Ethernet Ethernet verage readi	Cla: Limit 74.0 74.0 74.0 74.0	e-scan (peak ss A Margin -10.4 -21.5 -20.8	Detector QP/Ave Peak Peak Peak Peak	s. average li Comments		30.000
reliminary Frequency MHz 1.763 1.176 0.588 inal quasi- Frequency	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV 63.6 52.5 53.2 - peak and a Level	Port Name Ethernet Ethernet Ethernet verage readi Port	Cla: Limit 74.0 74.0 74.0 74.0 ings	e-scan (peak ss A Margin -10.4 -21.5 -20.8 ss A	Teadings v Detector QP/Ave Peak Peak Peak Detector	s. average li		30.000
Preliminary Frequency MHz 1.763 1.176 0.588 inal quasi- Frequency MHz	30.0 - 20.0 - 10.0 - 0.150 7 peak readin Level dBµV 63.6 52.5 53.2 - peak and a Level dBµV	Port Name Ethernet Ethernet Ethernet verage readi Port Name	Cla: Limit 74.0 74.0 74.0 ings Cla: Limit	e-scan (peak ss A -10.4 -21.5 -20.8 ss A Margin	x readings v Detector QP/Ave Peak Peak Peak Detector QP/Ave	s. average li Comments Comments	mit)	30.000
Preliminary Frequency MHz 1.763 1.176 0.588 Frequency MHz 1.763	30.0 - 20.0 - 10.0 - 0.150 7 peak readin Level dBµV 63.6 52.5 53.2 - peak and an Level dBµV 63.9	Port Name Ethernet Ethernet Ethernet verage readi Port Name Ethernet	Cla: Limit 74.0 74.0 74.0 ings Cla: Limit 74.0	e-scan (peak ss A -10.4 -21.5 -20.8 ss A Margin -10.1	Teadings v Detector QP/Ave Peak Peak Peak Detector QP/Ave AVG	s. average li Comments Comments AVG (0.10s	mit)	30.000
Preliminary Frequency MHz 1.763 1.176 0.588 Frequency MHz 1.763 1.176	30.0 - 20.0 - 10.0 - 0.150 7 peak readin Level dBµV 63.6 52.5 53.2 - peak and an Level dBµV 63.9 51.9	Port Name Ethernet Ethernet Ethernet verage readi Port Name Ethernet Ethernet	Cla: Limit 74.0 74.0 74.0 ings Cla: Limit 74.0 74.0 74.0	e-scan (peak ss A Margin -10.4 -21.5 -20.8 ss A Margin -10.1 -22.1	Teadings v Detector QP/Ave Peak Peak Peak Detector QP/Ave AVG AVG	s. average li Comments Comments AVG (0.10s AVG (0.10s	mit)	30.000
Preliminary Frequency MHz 1.763 1.176 0.588 Frequency MHz 1.763 1.176 1.763	30.0 - 20.0 - 10.0 - 0.150 peak readin Level dBµV 63.6 52.5 53.2 -peak and an Level dBµV 63.9 51.9 64.0	Port Name Ethernet Ethernet Verage readi Port Name Ethernet Ethernet Ethernet	Cla: Limit 74.0 74.0 74.0 Cla: Cla: Limit 74.0 74.0 87.0	e-scan (peak ss A Margin -10.4 -21.5 -20.8 ss A Margin -10.1 -22.1 -23.0	readings v Detector QP/Ave Peak Peak Detector QP/Ave AVG QP	s. average li Comments Comments AVG (0.10s AVG (0.10s) QP (1.00s)	mit)	30.000
Preliminary Frequency MHz 1.763 1.176 0.588 Frequency MHz 1.763 1.176	30.0 - 20.0 - 10.0 - 0.150 7 peak readin Level dBµV 63.6 52.5 53.2 - peak and an Level dBµV 63.9 51.9	Port Name Ethernet Ethernet Ethernet verage readi Port Name Ethernet Ethernet	Cla: Limit 74.0 74.0 74.0 ings Cla: Limit 74.0 74.0 74.0	e-scan (peak ss A Margin -10.4 -21.5 -20.8 ss A Margin -10.1 -22.1	Teadings v Detector QP/Ave Peak Peak Peak Detector QP/Ave AVG AVG	s. average li Comments Comments AVG (0.10s AVG (0.10s	mit)	30.000


(7 E	Elliott An DES [*] company	EM	C Test Data
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058
would.	6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Standard:	FCC Part15B, EN 55022, VCCI	Class:	A

Test Configuration Photograph #1 (Conducted Emissions - Signal Ports)

(je b	Elliott An DES [*] company	EM	C Test Data
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Madal	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058
wouer.	6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А

Test Configuration Photograph #2 (Conducted Emissions - Signal Ports)

Ē		EMC Test Dat		
Client:	Supermicro Computer, Inc.	Job Number:	J87050	
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N,	T-Log Number:	T87058	
woder:	SSG-6047R-E1R36N)	Account Manager:	Chandra Morris	
Contact:	Victor Yuan			
Standard:	FCC Part15B, EN 55022, VCCI	Class:	A	
	Radiated Emissions (Elliott Laboratories Fremont Facility, Semi-Anec	hoic Chamber)		
est Spec	cific Details			
	Objective: The objective of this test session is to perform final qualification specification listed above.	on testing of the EUT with	h respect to the	

Date of Test: 4/14/2012 Test Engineer: Chris Groat Test Location: Fremont Chamber #4 Config. Used: 1 Config Change: none EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing. Any remote support equipment was located outside the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

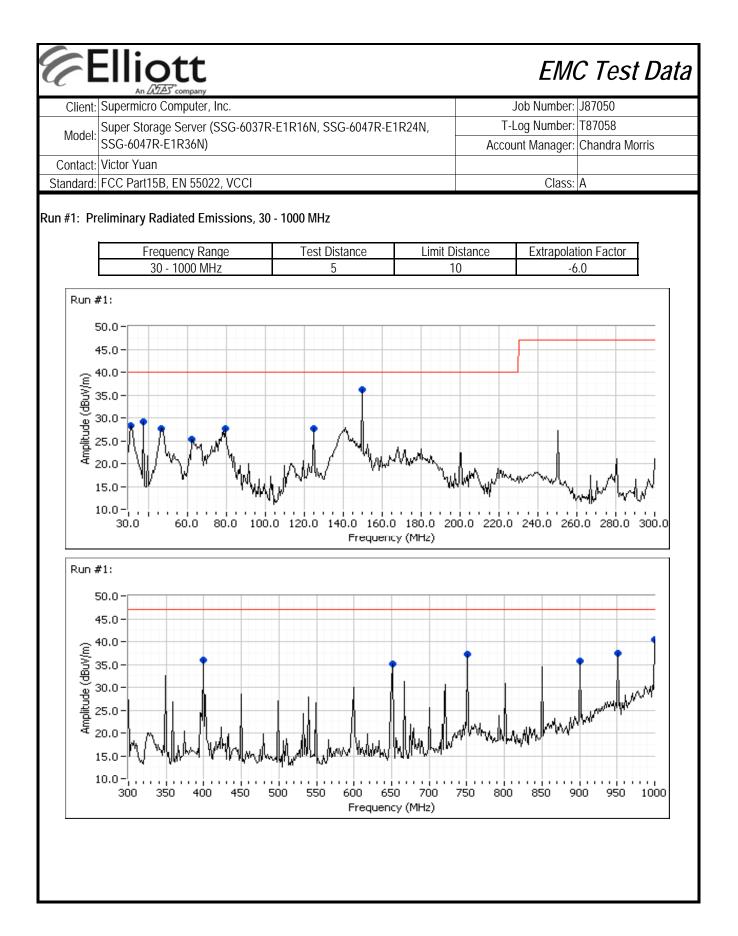
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature:	21 °C
Rel. Humidity:	34 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	Radiated Emissions 30 - 1000 MHz, Preliminary	Class A	EVAL	Refer to individual runs
2	Radiated Emissions 30 - 1000 MHz, Maximized	Class A	Pass	36.4 dBµV/m @ 150.01 MHz (-3.6 dB)
3	Radiated Emissions 1 GHz - 15 GHz Maximized	FCC Class A	Pass	47.2 dBµV/m @ 6000.0 MHz (-2.3 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client	Supermicro	Computer,	Inc.		Job Number:	J87050			
Madal	Super Stora	ge Server	(SSG-6037R	-E1R16N, S	SG-6047R-E1	R24N,	T-	Log Number:	T87058
Model	SSG-6047R						Acco	unt Manager:	Chandra Morris
Contact	Victor Yuan								
Standard:	FCC Part15	B, EN 5502	22, VCCI					Class:	A
	reliminary Ra y peak readir	ngs captu	red during p	re-scan					
requency	1	Pol		022 A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
150.006	36.1	H	40.0	-3.9	Peak	274	3.0		
1000.000 950.018	40.5 37.4	H H	47.0 47.0	-6.5 -9.6	Peak Peak	203 197	1.0 1.0		
750.018	37.4	н V	47.0	-9.0 -9.8	Peak	197	1.0	+	
36.968	29.1	V	47.0	-9.0	Peak	50	1.0		
399.995	36.0	H	47.0	-11.0	Peak	161	1.0		
900.005	35.7	V	47.0	-11.3	Peak	159	1.5		
31.388	28.3	V	40.0	-11.7	Peak	120	1.0		
650.036	35.2	Ĥ	47.0	-11.8	Peak	120	1.0		
125.006	27.7	V	40.0	-12.3	Peak	285	1.0		
78.459	27.6	V	40.0	-12.4	Peak	10	1.0		
47.076	27.6	V	40.0	-12.4	Peak	112	1.5		
63.819	25.4	V	40.0	-14.6	Peak	315	3.5		
eliminary	y quasi-peak	readings	(no manipu	lation of EU	T interface c	ables)			
requency	Level	Pol	EN55	022 A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
150.006	36.4	Н	40.0	-3.6	QP	275	3.0	QP (1.00s)	
000.000	41.9	Н	47.0	-5.1	QP	205	1.0	QP (1.00s)	
50.006	37.9	V	47.0	-9.1	QP	196	1.0	QP (1.00s)	
50.018	36.4	Н	47.0	-10.6	QP	196	1.0	QP (1.00s)	
200.005	34.0	V	47.0	-13.0	QP	160	1.5	QP (1.00s)	
125.006	26.9	V	40.0	-13.1	QP	286	1.0	QP (1.00s)	
31.388	26.2	V	40.0	-13.8	QP	121	1.0	QP (1.00s)	
50.036	33.2	H	47.0	-13.8	QP	178	1.0	QP (1.00s)	
47.076	23.1	V	40.0	-16.9	QP	113	1.5	QP (1.00s)	
8.459	19.7	V	40.0	-20.3	QP	8	1.0	QP (1.00s)	
899.995 42.010	26.4	H	47.0	-20.6	QP	160	1.0	QP (1.00s)	
63.819 35.432	19.0 15.8	V V	40.0 40.0	-21.0 -24.2	QP QP	316 51	3.5 1.0	QP (1.00s)	
	158	V V	4()()	-147	4U	51	I I ()	QP (1.00s)	

EMC Test Data

	An AZAS company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058
wodel:	SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А

Run #2: Maximized Readings From Run #1

37.9

36.4

34.0

26.9

V

Η

V

٧

750.006

950.018

900.005

125.006

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

47.0

47.0

47.0

40.0

	Frequency Range			Test Distance		Limit Distance		Extrapolation Factor
	30 - 1000 MHz		5		10		-6.0	
Frequency	Level	Pol	EN55	022 A	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
150.006	36.4	Н	40.0	-3.6	QP	275	3.0	QP (1.00s)
1000.000	41.9	Н	47.0	-5.1	QP	205	1.0	QP (1.00s)

QP

QP

QP

QP

196

196

160

286

QP (1.00s)

QP (1.00s)

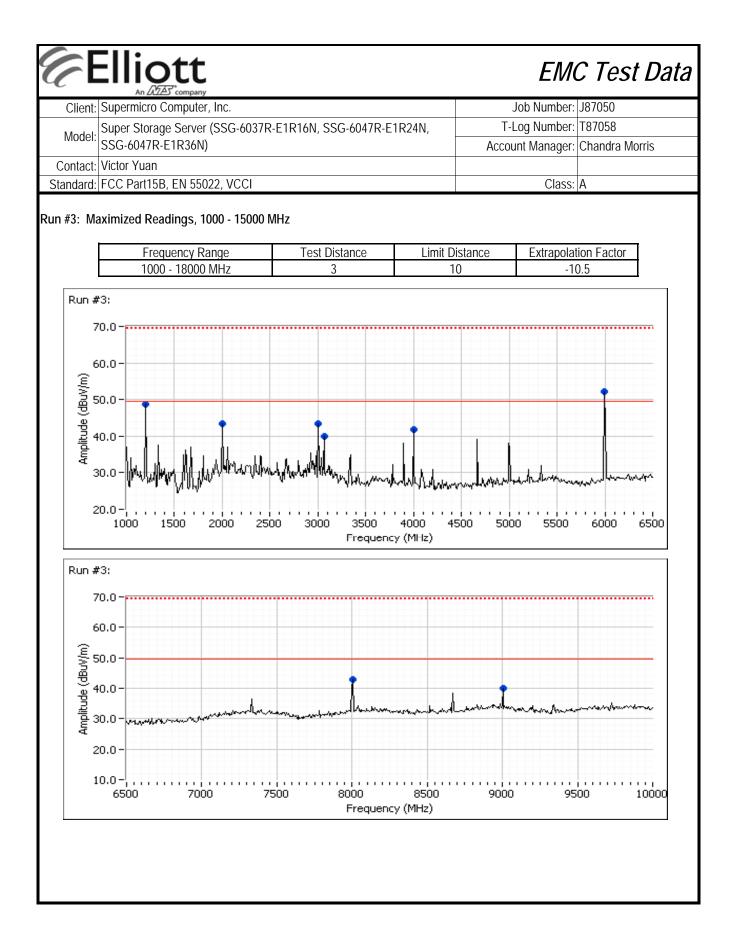
QP (1.00s)

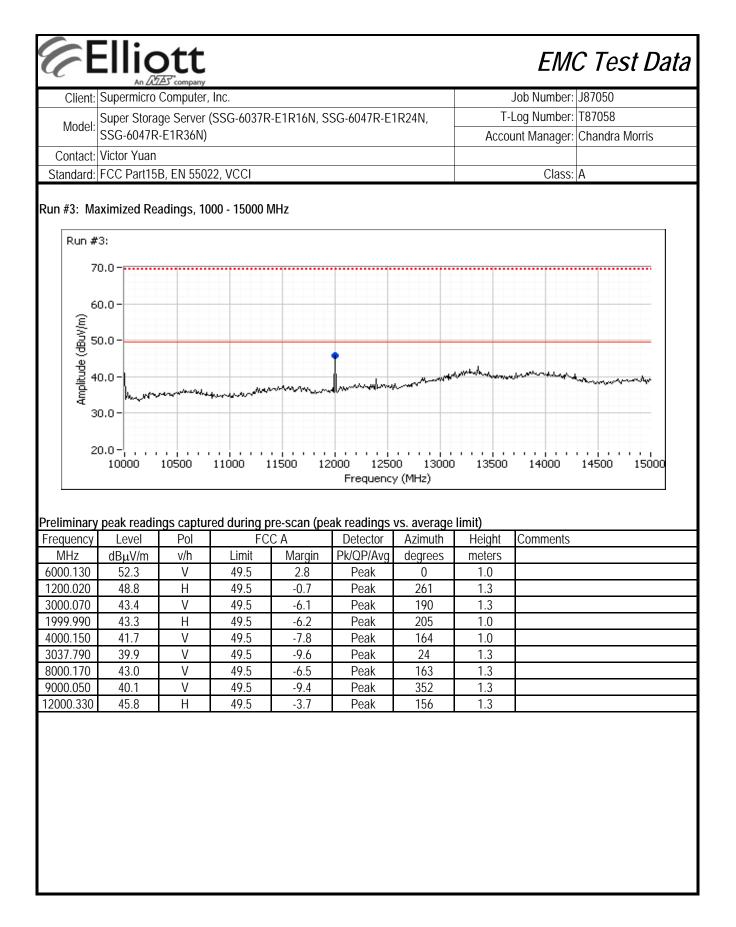
QP (1.00s)

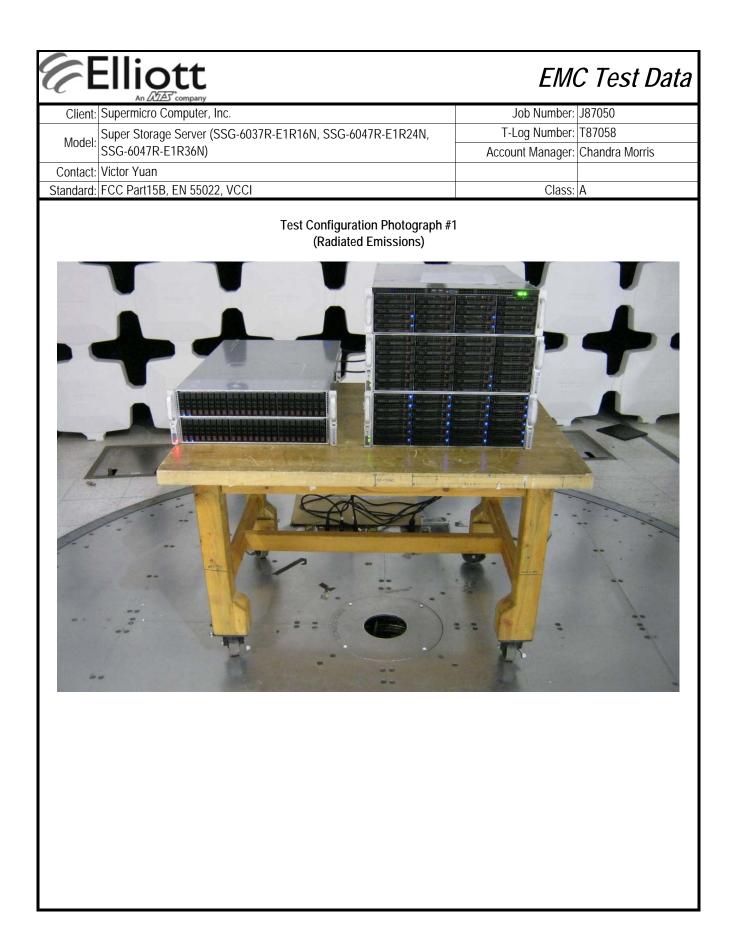
1.0

1.0

1.5

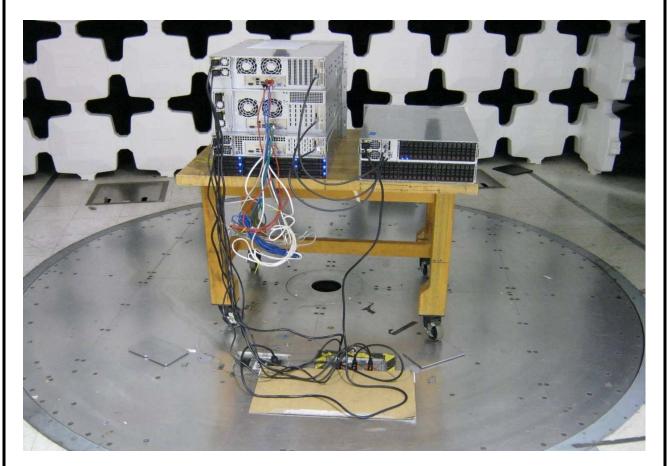

1.0

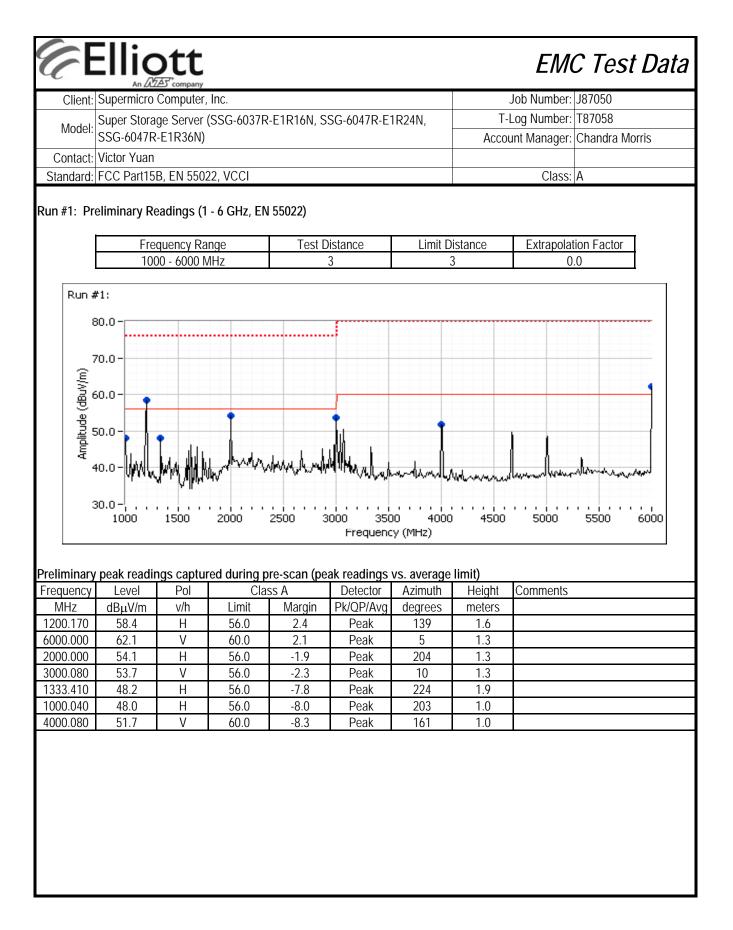

-9.1


-10.6

-13.0

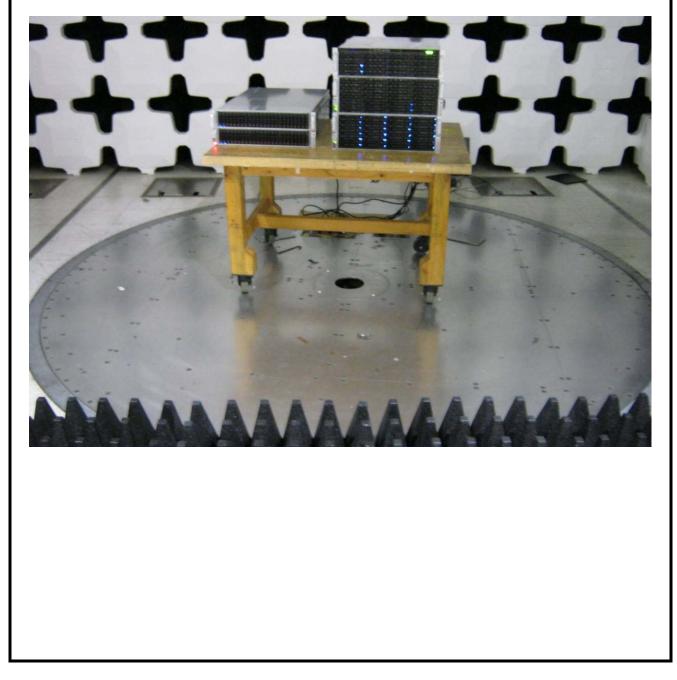
-13.1



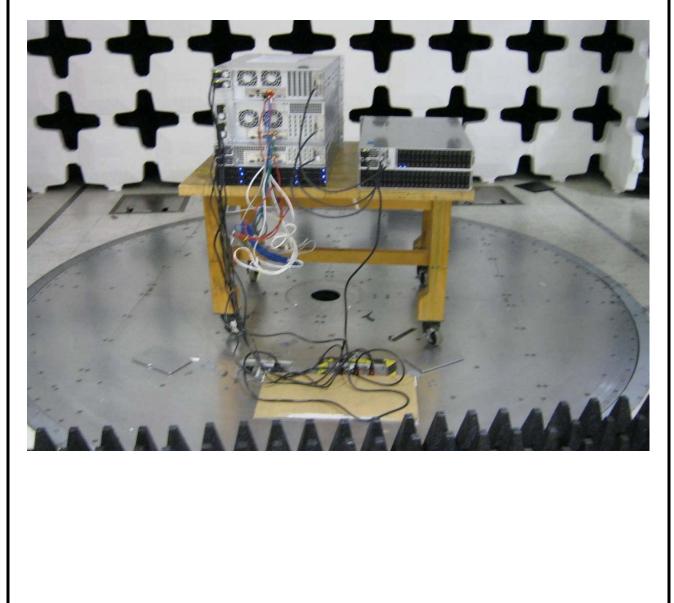


(CE	Elliott An DES [*] company	EMC Test Data			
Client:	Supermicro Computer, Inc.	Job Number:	J87050		
Madal	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058		
wouer.	SSG-6047R-E1R36N)	Account Manager:	Chandra Morris		
Contact:	Victor Yuan				
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А		

Test Configuration Photograph #2 (Radiated Emissions)


C		D tt [∠] [*] company		EMC Test Data					
Client:	Supermicro	Computer, Inc.	_	J	ob Number:	J87050			
Model:		ge Server (SSG-6037R-E1R16N, SS		T-Log Number: T87058					
	SSG-6047R	-E1R36N)	Accou	nt Manager:	Chandra Morris				
	Victor Yuan				Class:	Δ			
Stariuaru:	FUC Partio	B, EN 55022, VCCI			CIASS.	A			
	(Ellio	Radiated En tt Laboratories Fremont Facility, o	nissions (Free-S Chamber Configured	•	Measurem	ents)			
Test Spe	-	S The objective of this test session is specification listed above.	to perform final qualific	cation testing of	the EUT with	h respect to the			
Те	Date of Test: est Engineer: est Location:		Config Chang	Config. Used: 1 Config Change: none EUT Voltage: 230V/50Hz					
site complie The EUT an was located and when p The test was Ambient	s with the rec id any local s outside the s ossible passe	Temperature:21Rel. Humidity:34	ements of radiated field he turntable for radiated s running to remote sup ng the chamber. °C	l strength above d emissions test	a 1GHz in a f ting. Any re	ree-space environment mote support equipmen			
Du	in #	Test Performed	Limit	Docult		Margin			
	1	Free Space Radiated Emissions 1 - 6 GHz, Preliminary	Class A	Result EVAL	Refe	r to individual runs			
2	2	Free Space Radiated Emissions 1 - 6 GHz, Maximized	Class A	Pass	52.4 dB	µV/m @ 1200.1 MHz (-3.6 dB)			
	ions Made								

Client:	Supermicro	Computer,	Inc.		Job Number:	J87050			
Madal	Super Stora	ge Server	(SSG-6037F	R-E1R16N, S	SG-6047R-E	1R24N,	T-	Log Number:	T87058
Model:	SSG-6047R						Ассо	unt Manager:	Chandra Morris
Contact:	Victor Yuan								
	FCC Part15	B, EN 5502	22, VCCI					Class:	A
	eliminary Re verage readi	. .		-	urntable azin	nuth and an	tenna heig		
Frequency	Level	Pol	Cla	ss A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1200.060	52.4	Н	56.0	-3.6	AVG	143	1.6	RB 1 MHz;V	
5999.980	56.4	V	60.0	-3.6	AVG	4	1.3	RB 1 MHz;V	
2000.030	49.3	Н	56.0	-6.7	AVG	204	1.3	RB 1 MHz;V	
2999.990	48.9	V	56.0	-7.1	AVG	7	1.3	RB 1 MHz;V	
1000.080	45.2 49.2	H V	56.0	-10.8	AVG AVG	203	1.0	RB 1 MHz;V	
3999.960		H	60.0 56.0	-10.8		159	1.1	RB 1 MHz;V	
1333.400 1199.750	44.9 63.2	H	56.0 76.0	-11.1 -12.8	AVG PK	218 143	1.9 1.6	RB 1 MHz;V	B 10 HZ;PK B 3 MHZ;Pk
2999.830	56.9	V	76.0	-12.0	PK PK	143 7	1.0		B 3 MHz;Pk
2000.040	56.5	H	76.0	-19.1	PK	204	1.3		B 3 MHz;Pk
1000.080	55.9	H	76.0	-20.1	PK	204	1.0		/B 3 MHz;Pk
5999.480	58.5	V	80.0	-21.5	PK	4	1.3		/B 3 MHz;Pk
1333.470	51.1	H	76.0	-24.9	PK	218	1.9	RB 1 MHz;V	
4000.000	54.8	V	80.0	-25.2	PK	159	1.1	RB 1 MHz;V	
un #2: Ma		adings fro quency Ra 10 - 6000 N	inge	Test D	V 55022) Vistance 3		istance		ion Factor .0
ncluding	and average	readings	able azimuth		eight, and m Detector				
Frequency	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
-requency MHz	52.4	Н	56.0	-3.6	AVG	143	1.6	RB 1 MHz;V	'B 10 Hz;Pk
MHz	56.4	V	60.0	-3.6	AVG	4	1.3	RB 1 MHz;V	
MHz 1200.060 5999.980		Н	56.0	-6.7	AVG	204	1.3	RB 1 MHz;V	
MHz 1200.060 5999.980 2000.030	49.3		56.0	-7.1	AVG	7	1.3	RB 1 MHz;V	
MHz 1200.060 5999.980 2000.030 2999.990	49.3 48.9	V						100 4 4 4 4 4	
	49.3	V H V	56.0 56.0 60.0	-10.8 -10.8	AVG AVG	203 159	1.0 1.1	RB 1 MHz;V RB 1 MHz;V	'B 10 Hz;Pk


(je	Elliott An DEAS [*] company	EMC Test Data			
Client:	Supermicro Computer, Inc.	Job Number:	J87050		
Madal	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058		
wouer.	SSG-6047R-E1R36N)	Account Manager:	Chandra Morris		
Contact:	Victor Yuan				
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А		

Test Configuration Photograph #1 (Radiated Emissions - Free Space)

Æ	Elliott An DEAS' company	EMC Test Data				
	Supermicro Computer, Inc.	Job Number:	J87050			
Model	Super Storage Server (SSG-6037R-E1R16N, SSG-6047R-E1R24N, SSG-6047R-E1R36N)	T-Log Number:	T87058			
wouer.	SSG-6047R-E1R36N)	Account Manager:	Chandra Morris			
Contact:	Victor Yuan					
Standard:	FCC Part15B, EN 55022, VCCI	Class:	А			

Test Configuration Photograph #2 (Radiated Emissions - Free Space)

s ification rizontal ground
ification
ification
rizontal
rizontal
rizontal
rizontal
ges (CD) e surfaces pment. 's
5
al Run
5

Client: Supermicro Computer, Inc.						Job Number: J87050				
	Super Storage Server (SSC		-E1R16N,	SSG-		T-Log	Number:	T87058		
	6047R-E1R24N, SSG-604							Chandra	Morris	
Contact:	Victor Yuan									
Immunity Standard(s):	EN 55024					Envi	ronment:	Cover sh	neet	
Run #1: Electrostatic Disc Doubled sided 4U	harge									
Indirect Di	scharges		Positive	Polarity			Negative	e Polarity		
(To Couplir				V)				:V)		
· · ·	X /				-					
Cont		Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
Mo		2	4	6	8	2	4	6	8	
/ertical Coupling Plane (VC ront, rear, left and right side		Х	Х			Х	Х			
Horizontal Coupling Plane (Х	Х			Х	Х			
he front, rear, left and right	-									
Direct Dis	charges		Positive	Polarity		Negative Polarity				
(To the	8	(kV)				(kV)				
Cont		Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
Mo		2	4	6	8	2	4	6	8	
op Side(x20)		X	X	-	-	X	X	-		
Right Side(x10)		X	X			X	X			
eft Side(x10)		Х	Х			Х	Х			
Front Side(x10)		Х	Х			Х	Х			
Back Side(x10)		Х	Х			Х	Х			
Front Handles(x4)		Х	Х			Х	Х			
Serial(dB9) Port		Х	Х			Х	Х			
USB Port		Х	Х			Х	Х			
RJ45 Port		X	X			X	X			
VGA Port AC Power Inputs(x2)		X X	X X			X X	X X			
Ground Screws(Back)		X	X			X	X			
			~			I ··				
Air Disc	harge	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
Mo	0	2	4	8	15	2	4	8	15	
AC Power Inputs		N/A	N/A	N/A		N/A	N/A	N/A		
Disk Drives		N/A	N/A	N/A		N/A	N/A	N/A		
ED's Front		N/A	N/A	N/A		N/A	N/A	N/A		
		Х				Х	Х			
Reset Button		Х	Х	Х		Х	Х	Х		
Power Button Reset Button Note: An "X" indicates th keep showing on the Note: ND: No discharge	at the unit continued to ope he screen and shall be mor was possible due to the lac coupling Plane. VCP: Vertic	X X erate as i hitored by sk of a dis	X X ntended. y the Burr	X X Normal o I-In Diagr	nostic Sof	X X is indicate tware. Th	X X ed by hav	X X ing the so	•	

EMC Test Data

An ZAZA) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

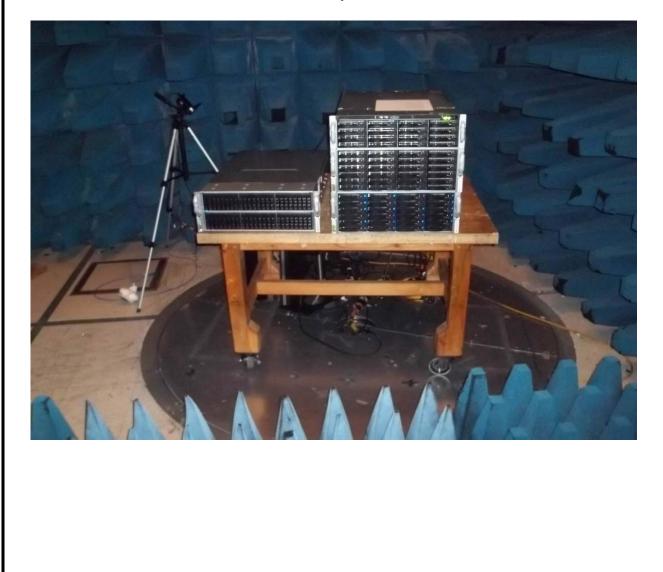
Test Configuration Photograph #1 (Electrostatic Discharge, EN 61000-4-2)

EMC Test Data

An //7A	5 company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Electrostatic Discharge, EN 61000-4-2)

	Ellio	Company				ΕN	IC Test Data
		Supermicro Comp					J87050
	Model:	Super Storage Server (SSG-6037R-E1R16N, SSC			T-Log N		
	Contact:	6047R-E1R24N, SSG-6047R-E1R36N) Victor Yuan				anager:	Chandra Morris
Imm	Contact: Victor Yuan Immunity Standard(s): EN 55024				Enviro	nment:	Cover sheet
					000 4 0		
		R	adiated Immu	UNITY (EN 61	000-4-3)		
	pecific Details bjective: The obje listed ab		ession is to perform	final qualification	testing of the EUT w	vith resp	pect to the specification
Date	e of Test: 4/13/201	2 13:32	Config. Used: 2	2			
Test E	Engineer: Chris Gr Location: Fremont	oat	Config Change: EUT Voltage:	none			
Ambie	nt Conditions:		perature: 21 Humidity: 34				
	nt Conditions: ary of Results	Rel. I	Humidity: 34	%			
Summa		Rel. I •Radiated Imm Test	Humidity: 34 Humidity: 34 Unity Level	% Performar	nce Criteria		Comments
Summa Run #	ary of Results	Rel. I	Humidity: 34	%	nce Criteria Met / Result		Comments
Summa Run #	ary of Results	Rel. I •Radiated Imm Test	Humidity: 34 Humidity: 34 Unity Level	% Performar		Re	Comments efer to Individual Run


EMC Test Data

		company								LIV		est L	λαια
		Supermi							Job	Number:	J87050		
	Model:	Super St	torage Se	erver (SSO	G-6037R-	E1R16N,	SSG-		T-Log	Number:	T87058		
6047R-E1R24N, SSG-6047R-E1R36N)							Account N	Manager:	Chandra	Morris			
Contact: Victor Yuan													
Immunity Standard(s): EN 55024							Envi	ronment:	Cover sh	neet			
Run #1: Radi	ated Immur	nity, 80-10	000 MHz	(EN6100	0-4-3)								
			equency:		0 MHz								
			tep Size:		%								
			well time:	2874									
			niformity:		x 1.5m								
		Test I	Distance:	2 me	eters								
			Mod	ulation D	etails								
		Modu	ulating Fr	equency:	1 kHz								
			Mc	dulation:	AM								
			Depth / D	Deviation:	80%								
Frequency	Level	Fr	ont	l oft	Side	Re	ear	Ri	ght	Т	ор	Bo	ttom
Range (MHz		Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Horiz.	Vert.	Hori
80-1000	3	X	X	X	X	X	X	X	X	N/A	N/A	N/A	N/A
N 55024 Sele		X	Х	Х	X	X	X	Х	X	N/A	N/A	N/A	N/A
Frequencies													
(Note 1)													
		80 MHz -	1000 MH	lz H 3Vm	.crf	es FT\CH	16\Curren	nt\80-1000) MHz (A	pril 2010))\03 Vm\ v	vere use	d:
keep	" indicates t showing on onitoring so	the scree						•		5	•	•	•
ine m	e EUT was t						onal chec of the stan		5				140.00

EMC Test Data

An ZAIZE	company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #1 (Radiated Immunity, EN 61000-4-3)

	An (ATA)	Supermicro Comp	utor Inc		Job Nur	nber: J87050		
				nber: T87058				
	Model: Super Storage Server (SSG-6037R-E1R16N, SSG- 6047R-E1R24N, SSG-6047R-E1R36N)				Account Manager: Chandra Morris			
	Contact: Victor Yuan							
Immu	inity Standard(s):	EN 55024			Environn	nent: Cover sheet		
		Electrical F	ast Transie	nt/Burst (EF	T/B) (EN 61000-4	4-4)		
Fest Sp	ecific Details							
Ot	bjective: The obje listed abo		ession is to perforr	n final qualificatior	n testing of the EUT with	n respect to the specification		
D .	(T. J. 4/1//201	2 10.20	Config. Used:	2				
	of Test: 4/16/201 naineer: Vishal Na			None				
Test Er	of Test: 4/16/201 ngineer: Vishal Na ocation: Fremont	arayan	Config Change: EUT Voltage:					
Test Er Test Le	ngineer: Vishal Na ocation: Fremont	arayan EMC Lab #1	Config Change: EUT Voltage:					
Test Er Test Lo Genera	ngineer: Vishal Na ocation: Fremont I Test Configu	arayan EMC Lab #1 Iration (EN 610	Config Change: EUT Voltage: 000-4-4)	230V/50Hz				
Test Er Test Lo Genera The EUT	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a	Config Change: EUT Voltage:)00-4-4) ground reference	230V/50Hz plane. A 0.5 m lo		d between the EUT's power		
Test Er Test Lo Genera The EUT and the co	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a g network. Interfer	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports in	dentified in the test data table		
Test Er Test Lo Genera The EUT and the co	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a g network. Interfer	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled	230V/50Hz plane. A 0.5 m lo d onto the cables		dentified in the test data table		
Test Er Test Lo General The EUT and the co using the	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench,	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a g network. Interfer	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports i	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, nt Conditions:	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a g network. Interfer with a maximum I	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports i	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, nt Conditions: Temp	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum I berature: 22	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports i	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, nt Conditions: Temp	arayan EMC Lab #1 Iration (EN 610 ed 10 cm above a g network. Interfer with a maximum I	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports i	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the Ambien	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, ot Conditions: Temp Rel. F	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum I berature: 22	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o	230V/50Hz plane. A 0.5 m lo d onto the cables	connected to the ports i	dentified in the test data table		
Test Er Test Lu General he EUT ind the co ising the Ambien	ngineer: Vishal Na ocation: Fremont I Test Configu system was location oupling/decoupling capacitive trench, ot Conditions: Temp Rel. Here ary of Results	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum l berature: 22 tumidity: 32	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o	230V/50Hz plane. A 0.5 m lo d onto the cables of cable between the	connected to the ports i	dentified in the test data table		
Test Er Test Lu General he EUT ind the co ising the Ambien	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, ot Conditions: Temp Rel. H rey of Results Port	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum l berature: 22 tumidity: 32	Config Change: EUT Voltage: 000-4-4) ground reference rence was coupled length of 0.5m of o °C %	230V/50Hz plane. A 0.5 m lo d onto the cables of cable between the	connected to the ports in interface port and the t	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the Ambien Rumma Run #	ngineer: Vishal Na ocation: Fremont I Test Configu system was locatio oupling/decoupling capacitive trench, ot Conditions: Temp Rel. H Intry of Results Port AC Power	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum I berature: 22 lumidity: 32 Test Required ± 1 kV	Config Change: EUT Voltage: D00-4-4) ground reference rence was coupled length of 0.5m of of °C % Level Applied ± 1 kV	230V/50Hz plane. A 0.5 m lo d onto the cables cable between the Performa Required B	nce Criteria Met / Result A / Pass	dentified in the test data table		
Test Er Test Lo General The EUT and the co using the Ambien Summa Run #	ngineer: Vishal Na ocation: Fremont I Test Configu system was locate oupling/decoupling capacitive trench, ot Conditions: Temp Rel. H rey of Results Port	arayan EMC Lab #1 aration (EN 610 ed 10 cm above a g network. Interfer with a maximum I berature: 22 łumidity: 32 Test Required	Config Change: EUT Voltage: D00-4-4) ground reference rence was coupled length of 0.5m of o °C %	230V/50Hz plane. A 0.5 m lo d onto the cables of cable between the Performa Required	connected to the ports in interface port and the t nce Criteria Met / Result	dentified in the test data table		

EMC Test Data

An /17A	5 [°] company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Run #1: EFT/B Testing

	Test Parame	ators							
Waveform: 5 ns / 50 ns				Rurs	st Period:	300 ms			
Repetition Frequency: 5 kHz (2.5 kHz @					st Width:				
Repetition Frequency. 5 KHz (2.5 KHz @			I	Dui	St Width.	10 1113			
	Applied		Positive	Polarity			Negative	e Polarity	
	Location			.V)				V)	
	Power Line	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
	Power Port(s)	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
	tral + Protective Earth	Note 1	Note 1			Note 1	Note 1		
(3-Wire	e AC Power Port)								
	I/O Port	Level 1 0.25	Level 2 0.5	Level 3	Level 4	Level 1 0.25	Level 2 0.5	Level 3	Level 4
				1.0	2.0			1.0	2.0
under the he ote: The interface	Ethernet ates that the unit continued ading "EUT operation dur e cables for the I/O ports t rd and mouse stopped res	ing immunity test ested were rout	sts. No er ed throug	rors were h the cap	e observe acitive tre	ed. ench and	tested sir	nultaneou	usly.
under the he Note: The interface lote 1: The Keyboar therefore the	ates that the unit continued ading "EUT operation dur e cables for the I/O ports t rd and mouse stopped res e EUT passes this test by	to operate as i ing immunity tes ested were rout ponding. The k	ntended. sts. No er ed throug eyboard a	rors were h the cap	e observe acitive tre	d to opera d. ench and	ate as ou tested sir	nultaneou	usly.
under the he Note: The interface ote 1: The Keyboar therefore the	ates that the unit continued ading "EUT operation dur e cables for the I/O ports t rd and mouse stopped res e EUT passes this test by p e ports were not tested:	to operate as i ing immunity tes ested were rout ponding. The k	ntended. sts. No er ed throug eyboard a	rors were h the cap	e observe acitive tre e are not	d to opera d. ench and to be eva	ate as ou tested sir	nultaneou	usly.
under the he lote: The interface ote 1: The Keyboar therefore the	ates that the unit continued ading "EUT operation dur e cables for the I/O ports t rd and mouse stopped res e EUT passes this test by p e ports were not tested:	to operate as i ing immunity tes ested were rout ponding. The k	ntended. sts. No er ed throug eyboard a teria A.	rors were h the cap nd mouse	e observe acitive tre e are not Reasor	d to opera d. ench and to be eva	ate as ou tested sir luated pe	nultaneou er perform	usly. nance ci

EMC Test Data

An //7A	5 company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Run #2: EFT/B Testing Test Method: EN 61000-4-4

Single sided 4U

Test Parame	ters
Waveform: 5 ns / 50 ns	Burst Period: 300 ms
Repetition Frequency: 5 kHz (2.5 kHz @ 4 kV)	Burst Width: 15 ms

Applied Location		Positive Polarity (kV)				Negative Polarity (kV)			
Power Line	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4	
AC Power Port(s)	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0	
Line + Neutral + Protective Earth	Х	Х			Х	Х			

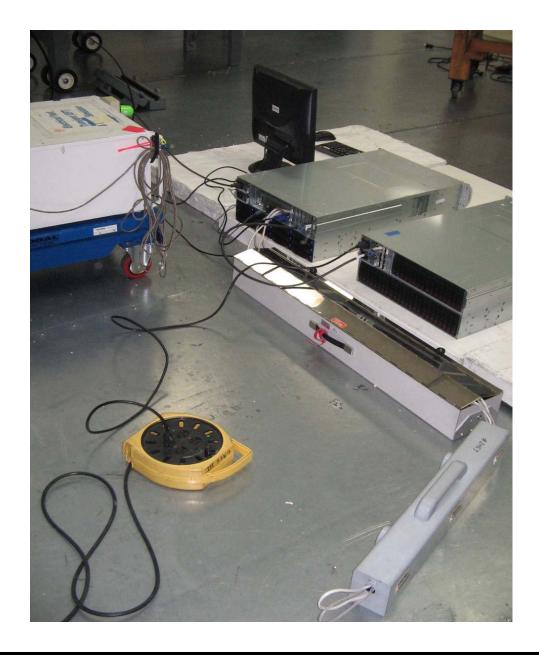
An "X" indicates that the unit continued to operate as intended. The EUT continued to operate as outlined in test configuration #2 Note: under the heading "EUT operation during immunity tests. No errors were observed.

The following interface ports were not tested:

(3-Wire AC Power Port)

Port(s)	Reason
USB, VGA and SATA	The ports are intended to connect to cables less than 3m in length and the product standard only
	requires the test to be performed on cables exceeding 3m in length.
Ethernet	Did not test per JT notes.

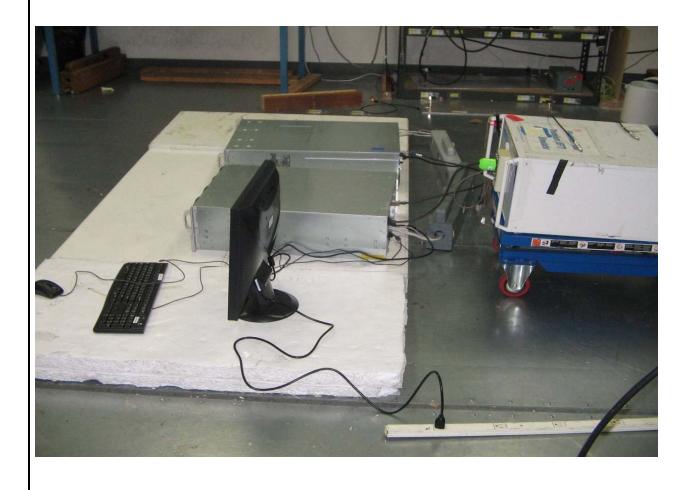
An ZAZZ	company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #1 (Electrical Fast Transient/Burst, EN 61000-4-4) Double sided 4U

An ZAZZ	company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Electrical Fast Transient/Burst, EN 61000-4-4) Double sided 4U

An ZAZA) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #1 (Electrical Fast Transient/Burst, EN 61000-4-4) Single sided 4U

An ZAIZE	company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Electrical Fast Transient/Burst, EN 61000-4-4) Single sided 4U


	Client	Supermicro Com	nuter Inc			b Number:	187050
			erver (SSG-6037R-	F1R16N, SSG-		g Number:	
	modeli	6047R-E1R24N, SSG-6047R-E1R36N)				9	Chandra Morris
	Contact: Victor Yuan						
Imm	nunity Standard(s):	EN 55024			En	vironment:	Cover sheet
			Surge ((EN 61000-4	-5)		
lest S	pecific Details						
	•		ession is to perform	n final qualification	n testing of the EU	T with resp	pect to the specification
	listed ab			. 1	J. J		
Dut	(T)	0.01.01		1			
	e of Test: 4/17/201 Engineer: Peter Sa		Config. Used: Config Change:				
10311	-		coming change.	NULLE			
	Vishal N Location: Fremont	arayan	EUT Voltage:				
Test	Vishal N Location: Fremont	arayan EMC Lab #2	0 0				
Test Genera	Vishal N Location: Fremont al Test Configu	arayan EMC Lab #2 Jration	EUT Voltage:	230V/50Hz	h		
Test Genera	Vishal N Location: Fremont al Test Configu	arayan EMC Lab #2 Jration	0 0	230V/50Hz	h.		
Test Genera The EUT	Vishal N Location: Fremont al Test Configu	arayan EMC Lab #2 uration port equipment we	EUT Voltage:	230V/50Hz -conductive benc	h.		
Test Genera The EUT	Vishal N Location: Fremont al Test Configu T and all local supp	arayan EMC Lab #2 uration port equipment we Tem	EUT Voltage: re located on a non	230V/50Hz -conductive benc °C	h.		
Test I Genera The EUT	Vishal N Location: Fremont al Test Configu T and all local supp ent Conditions:	arayan EMC Lab #2 uration port equipment we Tem	EUT Voltage: re located on a non perature: 24	230V/50Hz -conductive benc °C	:h.		
Test I Genera The EUT Ambie	Vishal N Location: Fremont al Test Configu T and all local supp	arayan EMC Lab #2 uration port equipment we Tem Rel.	EUT Voltage: re located on a non perature: 24 Humidity: 33	230V/50Hz -conductive benc °C %		T	
Test Genera The EUT Ambie Summ	Vishal N Location: Fremont al Test Configu T and all local supp ent Conditions:	arayan EMC Lab #2 uration port equipment we Tem Rel. Test	EUT Voltage: re located on a non perature: 24 Humidity: 33	230V/50Hz -conductive benc °C % Performa	nce Criteria		Comments
Test Genera he EUT Ambie Gumm Run #	Vishal N Location: Fremont al Test Configu T and all local supp ent Conditions: hary of Results Port	arayan EMC Lab #2 uration port equipment we Tem Rel.	EUT Voltage: re located on a non perature: 24 Humidity: 33	230V/50Hz -conductive benc °C % Performa Required	nce Criteria Met / Result	Cingle ci	
Test I Genera The EUT Ambie	Vishal N Location: Fremont al Test Configu T and all local supp ent Conditions: hary of Results	arayan EMC Lab #2 uration port equipment we Tem Rel. Test Required ± 2 kV CM ± 1 kV DM	EUT Voltage: re located on a non perature: 24 Humidity: 33 Level Applied	230V/50Hz -conductive benc °C % Performa	nce Criteria	Single sid	
Test Genera The EUT Ambie Summ Run #	Vishal N Location: Fremont al Test Configu T and all local supp ent Conditions: hary of Results Port	arayan EMC Lab #2 uration port equipment we Tem Rel. Test Required ± 2 kV CM	EUT Voltage: re located on a non perature: 24 Humidity: 33 Level Applied ± 2 kV CM	230V/50Hz -conductive benc °C % Performa Required	nce Criteria Met / Result	Single sid	ded 4U

EMC Test Data

								001
Client: Supermicro Compu						Number:		
Model: Super Storage Serv			SSG-			Number:		
6047R-E1R24N, S	SG-6047R-E1R3	6N)		1	Account N	Manager:	Chandra	Morris
Contact: Victor Yuan								
Immunity Standard(s): EN 55024					Envi	ronment:	Cover sh	neet
un #1: Surge Immunity, Power Line C Power Port ngle sided 4U								
	Test Parameters							
Waveform: 1.2/50µS								
Impedance: 12 Ohms	(Common Mode)	, 2 Ohms	(Differen	itial Mode	e)			
	, 							
Applied			Polarity			Ŭ,	e Polarity	
Location		(k	V)			(k	V)	
Power	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Line	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line to Line (Differential Mode)								
0°	Х	Х			Х	Х		
90°	Х	Х			Х	Х		
180°	Х	Х			Х	Х		
270°	Х	Х			Х	Х		
Line to PE (Common Mode)								
0°	Х	Х	Х		Х	Х	Х	
90°	Х	Х	Х		Х	Х	Х	
180°	Х	Х	Х		Х	Х	Х	
270°	Х	Х	Х		Х	Х	Х	
Neutral to PE (Common Mode)								
	Х	Х	Х		Х	Х	Х	
0°		X	X		X	X	X	
<u> </u>	Х							-
	X	X	Х		Х	Х	Х	

EMC Test Data

					1	Numeric	107050	
Client: Supermicro Comp			666			Number:		
Model: Super Storage Ser	•		, 336-			Number:		Morrie
6047R-E1R24N, S	SG-604/R-EIR3	6N)			Account	vianager:	Chandra	MOTTIS
Contact: Victor Yuan Immunity Standard(s): EN 55024					Envi	ronmont	Cover sh	noot
Infinutily Standard(S): EN 55024					EIIVI	ronment:	Covel SI	ieei
Run #2: Surge Immunity, Power Line IC Power Port Double sided 4U								
	Test Parameters					1		
Waveform: 1.2/50µS								
Impedance: 12 Ohms), 2 Ohms	(Differen	ntial Mode	2)			
					/	4		
Applied			e Polarity				e Polarity	
Location		(k	XV)			(k	XV)	
Power	Level 1	Level 2	Level 3	Level 4	Level 1	Level 2	Level 3	Level 4
Line	0.5	1.0	2.0	4.0	0.5	1.0	2.0	4.0
Line to Line (Differential Mode)					-			
0°	Х	Х			Х	Х		
90°	Х	Х			Х	Х		
180°	Х	Х			Х	Х		
270°	Х	Х			Х	Х		
Line to PE (Common Mode)								
0°	Х	Х	Х		Х	Х	Х	
90°	Х	Х	Х		Х	Х	Х	
180°	Х	Х	Х		Х	Х	Х	
270°	Х	Х	Х		Х	Х	Х	
Neutral to PE (Common Mode)								
	Х	Х	Х		Х	Х	Х	
0°	X	Х	Х		Х	Х	Х	
<u> </u>	×				Х	Х	Х	
-	X	Х	Х		∧	~	Ă	

Ellio	ott
-------	-----

An ZAZA) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Surge, EN 61000-4-5)

		Company Supermicro Comp	outer, Inc.		Job	Number:	J87050
		Super Storage Se		E1R16N, SSG-	T-Log	Number:	T87058
		6047R-E1R24N, SSG-6047R-E1R36N) Contact: Victor Yuan				Nanager:	Chandra Morris
Imm						ronmont	Cover sheet
	unity Standard(s):	EN 55024			EIIVI	ionment:	Cover sheet
		Сс	onducted Imr	munity (EN	61000-4-6)		
est Sp	pecific Details	i					
0	bjective: The objective: The objective		ession is to perform	final qualification	n testing of the EUT	with res	pect to the specification
Date	e of Test: 4/16/20	12 19:20	Config. Used:	2			
	Engineer: Vishal N		Config Change:				
Toct I	_ocation: Fremon	t EMC Lab #1	EUT Voltage:	230V/50Hz			
TESLE			-				
		uration	-				
Genera	al Test Config						
Genera The EUT	al Test Config and all local sup	port equipment wer	•	• • •	•		nce plane. All interface
Genera The EUT	al Test Config and all local sup etween parts of th	port equipment wer	ent comprising sev	eral units) and to	local support equip	ment we	re also placed on the
Genera The EUT cables be	al Test Config and all local sup etween parts of th g support. All inte	port equipment wer	ent comprising sev	eral units) and to	local support equip	ment we	•
Genera The EUT cables be	al Test Config and all local sup etween parts of th	port equipment wer	ent comprising sev	eral units) and to	local support equip	ment we	re also placed on the
Genera The EUT cables be nsulating pround re	al Test Config and all local sup etween parts of th g support. All inte eference plane.	port equipment wer le EUT (for equipmor rface cabling betwo	ent comprising sev een the EUT and th	eral units) and to le coupling and d	local support equip	ment we	re also placed on the
Genera The EUT cables be nsulating pround re	al Test Config and all local sup etween parts of th g support. All inte	port equipment wer le EUT (for equipme rface cabling betwee : Tem	ent comprising sev een the EUT and th perature: 23	eral units) and to e coupling and d °C	local support equip	ment we	re also placed on the
Genera The EUT tables be nsulating pround re	al Test Config and all local sup etween parts of th g support. All inte eference plane.	port equipment wer le EUT (for equipme rface cabling betwee : Tem	ent comprising sev een the EUT and th	eral units) and to e coupling and d °C	local support equip	ment we	re also placed on the
Genera The EUT ables be nsulating round re Ambier	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions	port equipment wer le EUT (for equipme rface cabling betwe : Tem Rel. H	ent comprising sev een the EUT and th perature: 23 Humidity: 32 mmunity	eral units) and to le coupling and d °C %	local support equip lecoupling network(ment we	re also placed on the
Genera The EUT ables be nsulating round re Ambier	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions	port equipment wer le EUT (for equipme rface cabling betwee : Tem Rel. F - Conducted In Test	ent comprising sev een the EUT and th perature: 23 Humidity: 32 mmunity Level	eral units) and to the coupling and d °C % Performa	local support equip lecoupling network(: nce Criteria	ment we	re also placed on the
Genera The EUT cables be nsulating pround re Ambier	al Test Configned and all local suppetween parts of the groupport. All intereference plane. Int Conditions ary of Results	port equipment wer le EUT (for equipme rface cabling betwee Temp Rel. I c - Conducted II Test Required	ent comprising sev een the EUT and th perature: 23 Humidity: 32 mmunity Level Applied	eral units) and to le coupling and d °C %	local support equip lecoupling network(ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT ables be nsulating round re Ambier	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port	port equipment wer le EUT (for equipment rface cabling between reaction of the second Rel. H Rel. H Conducted In Test Required 0.15-80MHz	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz	eral units) and to the coupling and d °C % Performa Required	local support equip ecoupling network(: nce Criteria Met / Result	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT ables be nsulating round re Ambier	al Test Configned and all local suppetween parts of the groupport. All intereference plane. Int Conditions ary of Results	port equipment wer e EUT (for equipment rface cabling between read to the second read to	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM	eral units) and to the coupling and d °C % Performa	local support equip lecoupling network(: nce Criteria	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT ables be nsulating round re Ambier	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port	port equipment wer e EUT (for equipme rface cabling betwee 	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms	eral units) and to the coupling and d °C % Performa Required	local support equip ecoupling network(: nce Criteria Met / Result	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT ables be nsulating round re Ambier	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port	port equipment wer e EUT (for equipment rface cabling between read to the second read to	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM	eral units) and to the coupling and d °C % Performa Required	local support equip ecoupling network(: nce Criteria Met / Result	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT cables be nsulating ground re Ambier Ambier Run #	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port AC power	port equipment wer le EUT (for equipme rface cabling betwee rface cabling betwee comparison of the second rest Required 0.15-80MHz 1kHz 80% AM <u>3 Vrms</u> 0.15-80MHz	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms 0.15-80MHz	eral units) and to the coupling and d °C % Performa Required A	Iocal support equip lecoupling network(: nce Criteria Met / Result A / Pass	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT cables be nsulating pround re Ambier Ambier Ambier 1	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port AC power Signal	port equipment wer the EUT (for equipment rface cabling between rface cabling between rface cabling between Rel. H rest Required 0.15-80MHz 1kHz 80% AM <u>3 Vrms</u> 0.15-80MHz 1kHz 80% AM <u>3 Vrms</u> 0.15-80MHz	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms 0.15-80MHz 1kHz 80% AM 3 Vrms 0.15-80MHz	eral units) and to the coupling and d °C % Performa Required A A	Iocal support equip ecoupling network(: Met / Result A / Pass A / Pass	ment we	re also placed on the ocated 3 to 5 cm above
Genera The EUT ables be nsulating round re Ambier Ambier Run #	al Test Config and all local sup etween parts of th g support. All inte eference plane. nt Conditions ary of Results Port AC power	port equipment wer the EUT (for equipment rface cabling between rface cabling between rface cabling between rface cabling between Rel. H rest Required 0.15-80MHz 1kHz 80% AM <u>3 Vrms</u> 0.15-80MHz 1kHz 80% AM <u>3 Vrms</u>	ent comprising sev een the EUT and the perature: 23 Humidity: 32 mmunity Level Applied 0.15-80MHz 1kHz 80% AM 3 Vrms 0.15-80MHz 1kHz 80% AM 3 Vrms	eral units) and to the coupling and d °C % Performa Required A	Iocal support equip lecoupling network(: nce Criteria Met / Result A / Pass	ment we	re also placed on the ocated 3 to 5 cm above

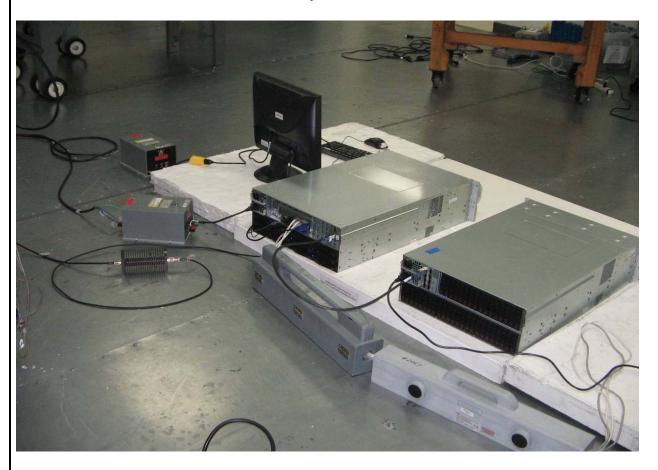
EMC Test Data

An AZZ	Company				
	: Supermicro Computer,			Job Number:	J87050
Model	: Super Storage Server (SSG-6037R-E1R16N	, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6	5047R-E1R36N)		Account Manager:	Chandra Morris
Contact	: Victor Yuan				
Immunity Standard(s)	: EN 55024			Environment:	Cover sheet
Oouble sided 4U	ceptibility (EN61000-4-6				
Test Level: 3 Vrms			on Details		
Step Size		Modulating Fr		Z	
Dwell time	: 2874 ms		odulation: AM		
		Depth / D	Deviation: 80%		
Frequency Range	Port Under Test	Injection Method		Commer	nts
MHz					
0.15 - 80	AC Power	M3	Note 1		
0.15 - 80	Ethernet	Clamp	Note 1		
he following interface po Port(s)	rts were not tested:		Reas	son	
SB, VGA and SATA	-	intended to connect to est to be performed on	cables less that	n 3m in length and t	he product standard only

EMC Test Data

An ATA	company				
	Supermicro Computer,			Job Number:	J87050
	Super Storage Server (SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6			Account Manager:	Chandra Morris
Contact:	Victor Yuan			*	
Immunity Standard(s):	EN 55024			Environment:	Cover sheet
Run #2: Conducted Susc Single sided 4U					
Test Level: 3 Vrms Modulation Detail					
Step Size: 1 % Modu		Modulating Fre			
Dwell time:	2874 ms		dulation: AM		
		Depth / Depth	eviation: 80%		
Frequency Range MHz	Port Under Test	Injection Method		Commen	ts
0.15 - 80	AC Power	M3	Note 1		
ote : As the EUT was t					e at the spot frequencies
errors were obser					
Port(s)	is were not rested.		Reason	1	
SB, VGA and SATA	The ports are	intended to connect to			ne product standard only
		st to be performed on			
thernet	Did not test pe			offi in fongui.	

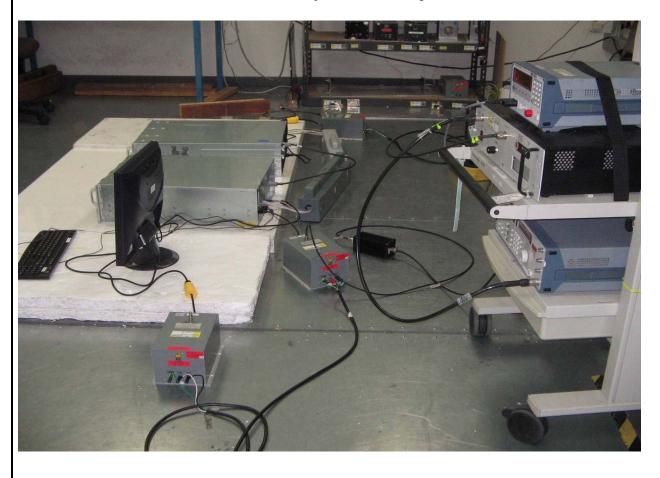
An ZAZZ) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #1 (Conducted Immunity, EN 61000-4-6) Double sided 4U

An ZAZZ) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Conducted Immunity, EN 61000-4-6) Double sided 4U

An ZAZA) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #1 (Conducted Immunity, EN 61000-4-6) Single sided 4U

An ZAZZ) company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet

Test Configuration Photograph #2 (Conducted Immunity, EN 61000-4-6) Single sided 4U

	Ellio	tt		EMC Test Dat			
Client: Supermicro Computer, Inc.					Job	Number: J87050	
	Model:		erver (SSG-6037R-			J Number: T87058	
	Contoot		SSG-6047R-E1R3	6N)	Account	Manager: Chandra Morris	
Imm	unity Standard(s):	Victor Yuan EN 55024			Env	vironment: Cover sheet	
		Voltaç	je Dips and I	nterrupts (E	EN 61000-4-1	1)	
•	pecific Details		ession is to perform	n final qualificatior	n testing of the EU	T with respect to the specification	
	listed ab		,	·	5		
Test E	e of Test: 4/16/20 Ingineer: Luis Cal Location: Fremon	orera	Config. Used: Config Change: EUT Voltage:	None			
	al Test Configue		re located on a non	n-conductive benc	h.		
	nt Conditions:	Rel. I	perature: 22 Humidity: 33	°C %			
	ary of Results	ī	Level	Performa	nce Criteria		
Run #	Port	Required	Applied	Required	Met / Result	Comments	
N 55024	4	1		1			
1	AC power	>95%	>95%	В	A / Pass	Tested on the double sided unit #	
-		>95% ½ period					
2	AC power	1⁄2 period	½ period	В	A / Pass	Tested on the single sided unit #4	
	AC power AC power	½ period	30%	B	A / Pass A / Pass		
2						Tested on the double sided unit #	
2	AC power	30%	30%	С	A / Pass	Tested on the single sided unit #4 Tested on the double sided unit # Tested on the single sided unit #4 Tested on the double sided unit #	

No modifications were made to the EUT during testing

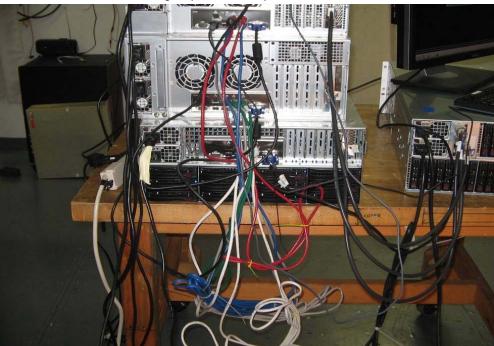
Deviations From The Standard

No deviations were made from the requirements of the standard.

Ellio	tt ⁵ company	EMC Test Dat	
	Supermicro Computer, Inc.		Job Number: J87050
	Super Storage Server (SSC		T-Log Number: T87058
	6047R-E1R24N, SSG-604		Account Manager: Chandra Morris
Contact:	Victor Yuan	/	<u> </u>
Immunity Standard(s):	EN 55024		Environment: Cover sheet
Run #1: Voltage Dips and		on the double sided unit	t #3
		00112	_
Voltage Dips/Time % / ms or % / periods	Port Under Test	Interrupt Voltage	Comments
>95% ½ period	AC Power	0	Note 1
30% 25 periods	AC Power	161	Note 1
>95% 250 periods	AC Power	0	Note 2
	·	on the single sided unit Volts 50 Hz	#4
Voltage Dips/Time % / ms or % / periods	Port Under Test	Interrupt Voltage	Comments
>95% ½ period	AC Power	0	Note 1
30% 25 periods	AC Power	161	Note 1
>95% 250 periods	AC Power	0	Note 2
Notoo			
errors were obser	rved.	C C	er the heading "EUT operation during immunity tests.
Note 2: During the test, the	ie Eutiturnea off. After the	lest, operator intervention	n was required to boot up the EUT normally

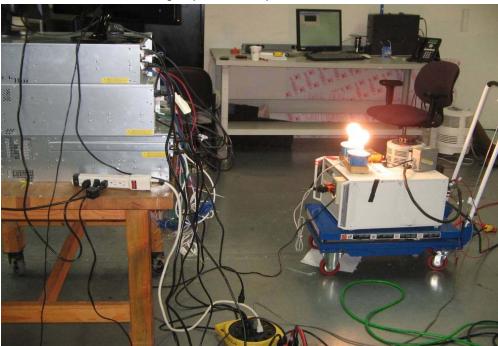
EMC Test Data

An (17A5	company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #1 Setup (Voltage Dips and Interrupts, EN 61000-4-11)

EMC Test Data

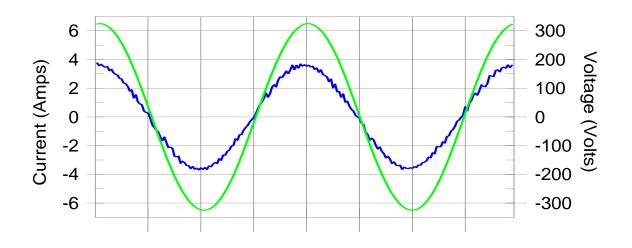
An <u>////</u> A	5 company		
Client:	Supermicro Computer, Inc.	Job Number:	J87050
Model:	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact:	Victor Yuan		
Immunity Standard(s):	EN 55024	Environment:	Cover sheet


Test Configuration Photograph #2, Run#1 (Voltage Dips and Interrupts, EN 61000-4-11)

EMC Test Data

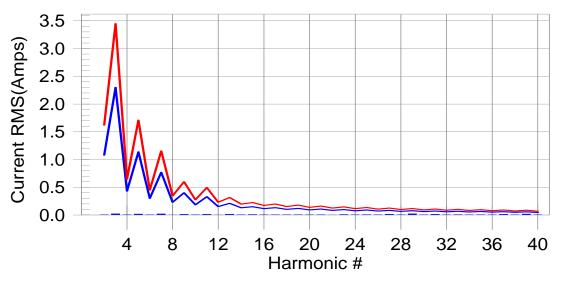
An //7A	5 company		
Client	Supermicro Computer, Inc.	Job Number:	J87050
Model	Super Storage Server (SSG-6037R-E1R16N, SSG-	T-Log Number:	T87058
	6047R-E1R24N, SSG-6047R-E1R36N)	Account Manager:	Chandra Morris
Contact	Victor Yuan		
Immunity Standard(s)	EN 55024	Environment:	Cover sheet

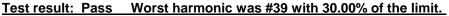
Test Configuration Photograph #3, Run#2 (Voltage Dips and Interrupts, EN 61000-4-11)


Appendix C Current Harmonics Test Data (EN 61000-3-2)

Harmonics (per EN 61000-3-2:2006 + A1:2009 + A2:2009) – Class-A per Ed. 3.2 (2009)(Run time) incl. inter-harmonics

EUT: Super Storage Server (P/S: PWS-1K28P-SQ)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/11/2012Start time: 1:11:14 PMEnd time: 1:12:35 PMTest duration (min): 1Data file name: H-000383.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.


Test Result: Pass Source qualification: Normal


Current & voltage waveforms

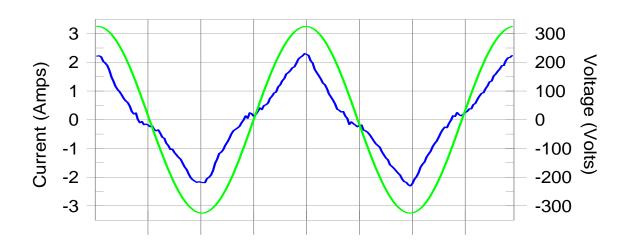
Harmonics and Class A limit line

European Limits

Current Test Result Summary (Run time)

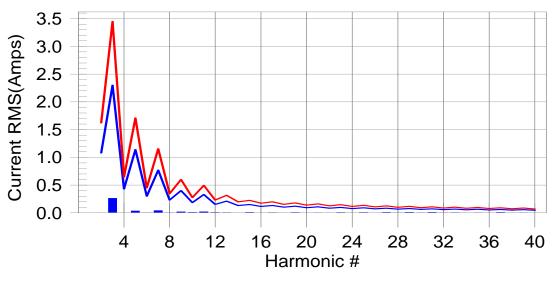
EUT: Cascaded Storage Server (P/S: PWS-1K28P-SQ)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/11/2012Start time: 1:11:14 PMEnd time: 1:12:35 PMTest duration (min): 1Data file name: H-000383.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.							
THC(A)	Test Result: Pass Source qualification: Normal THC(A): 0.05 I-THD(%): 1.99 POHC(A): 0.032 POHC Limit(A): 0.304 Highest parameter values during test:						
	V_RMS (Volts			Frequency(Hz)			
	I_Peak (Amps			I_RMS (Amps)			
	I_Fund (Amps			Crest Factor:	1.524		
	Power (Watts): 563.9		Power Factor:	0.993		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	1.080	0.0	0.002	1.620	0.15	Pass
3	0.023	2.300	1.0	0.023	3.450	0.67	Pass
4	0.002	0.430	0.0	0.002	0.645	0.34	Pass
5	0.017	1.140	1.5	0.018	1.710	1.05	Pass
6	0.002	0.300	0.0	0.002	0.450	0.50	Pass
7	0.018	0.770	2.4	0.019	1.155	1.62	Pass
8	0.002	0.230	0.0	0.002	0.345	0.55	Pass
9	0.013	0.400	0.0	0.013	0.600	2.21	Pass
10	0.002	0.184	0.0	0.002	0.276	0.82	Pass
11	0.014	0.330	0.0	0.014	0.495	2.92	Pass
12	0.002	0.153	0.0	0.002	0.230	0.89	Pass
13	0.016	0.210	7.5	0.016	0.315	5.09	Pass
14	0.002	0.131	0.0	0.002	0.197	1.22	Pass
15	0.009	0.150	0.0	0.010	0.225	4.40	Pass
16	0.002	0.115	0.0	0.002	0.173	1.42	Pass
17	0.004	0.132	0.0	0.005	0.199	2.40	Pass
18	0.002	0.102	0.0	0.002	0.153	1.61	Pass
19	0.006	0.118	0.0	0.006	0.178	3.53	Pass
20	0.002	0.092	0.0	0.002	0.138	1.70	Pass
21	0.007	0.107	0.0	0.007	0.161	4.37	Pass
22	0.002	0.084	0.0	0.002	0.125	1.64	Pass
23	0.010	0.098	0.0	0.010	0.147	6.93	Pass
24	0.002	0.077	0.0	0.002	0.115	1.81	Pass
25	0.008	0.090	0.0	0.008	0.135	6.06	Pass
26	0.002	0.071	0.0	0.002	0.106	2.09	Pass
27	0.015	0.083	17.9	0.016	0.125	12.44	Pass
28 29	0.002 0.022	0.066 0.078	0.0 28.0	0.003 0.022	0.099 0.116	2.67 19.32	Pass
29 30	0.022	0.078	20.0	0.022	0.092	2.63	Pass Pass
30 31	0.002	0.001	0.0	0.002	0.092	12.42	Pass
32	0.003	0.073	0.0	0.003	0.086	3.62	Pass
33	0.003	0.068	0.0	0.003	0.102	7.79	Pass
33	0.007	0.054	0.0	0.003	0.081	3.55	Pass
34	0.002	0.064	0.0	0.003	0.096	6.83	Pass
36	0.003	0.051	0.0	0.003	0.077	4.15	Pass
37	0.014	0.061	0.0	0.014	0.091	15.47	Pass
38	0.003	0.048	0.0	0.004	0.073	5.78	Pass
39	0.017	0.058	30.0	0.018	0.087	20.36	Pass
40	0.002	0.046	0.0	0.003	0.069	3.84	Pass

Voltage Source Verification Data (Run time)


EUT: Cascaded Storage Server (P/S: PWS-1K28P-SQ)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/11/2012Start time: 1:11:14 PMEnd time: 1:12:35 PMTest duration (min): 1Data file name: H-000383.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.							
Test Res	sult: Pass Source qua	alification: Norma	al				
	parameter values during to	est:					
	/oltage (Vrms): 229.95		uency(Hz): 50.00				
	_Peak (Amps): 3.769		S (Amps): 2.487				
	_Fund (Amps): 2.467		Factor: 1.524				
F	Power (Watts): 563.9 Power Factor: 0.993						
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status			
2	0.062	0.460	13.48	ОК			
3	0.504	2.069	24.36	OK			
4	0.021	0.460	4.55	OK			
5	0.039	0.920	4.24	OK			
6	0.028	0.460	6.02	OK			
7	0.018	0.690	2.68	OK			
8	0.006	0.460	1.35	OK			
9	0.048	0.460	10.49	OK			
10	0.006	0.460	1.39	OK			
11	0.017	0.230	7.34	OK			
12	0.013	0.230	5.44	OK			
13	0.011	0.230	4.64	OK			
14	0.005	0.230	2.20	OK			
15	0.007	0.230	2.93	OK			
16	0.008	0.230	3.67	OK			
17	0.015	0.230	6.47	OK			
18	0.008	0.230	3.48	OK			
19	0.019	0.230	8.27	OK			
20	0.011	0.230	4.85	OK			
21	0.015	0.230	6.69	OK			
22	0.006	0.230	2.69	OK			
23	0.018	0.230	7.89	OK			
24	0.006	0.230	2.81	OK			
25	0.006	0.230	2.42	OK			
26	0.006	0.230	2.74	OK			
27	0.018	0.230	7.91	OK			
28	0.003	0.230	1.46	OK			
29	0.027 0.005	0.230	11.77	OK OK			
30 31		0.230 0.230	2.08	OK			
31	0.019 0.005	0.230	8.17 2.20	OK			
32	0.005	0.230	3.31	OK			
33 34	0.008	0.230	1.76	OK			
34 35	0.004	0.230	3.49	OK			
35	0.008	0.230	1.80	OK			
30	0.004	0.230	8.72	OK			
38	0.020	0.230	1.84	OK			
39	0.004	0.230	7.94	OK			
40	0.010	0.230	4.97	OK			
τv	0.011	3.200		U IX			

Harmonics (per EN 61000-3-2:2006 + A1:2009 + A2:2009) – Class-A per Ed. 3.2 (2009)(Run time) incl. inter-harmonics

EUT: Super Storage Server (P/S: PWS-920P-1R)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/11/2012Start time: 1:06:15 PMEnd time: 1:07:36 PMTest duration (min): 1Data file name: H-000382.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

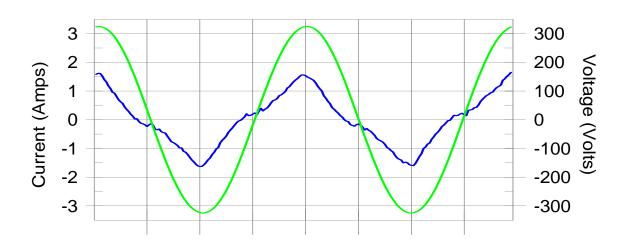
European Limits

Test result: Pass Worst harmonic was #31 with 12.08% of the limit.

Current Test Result Summary (Run time)

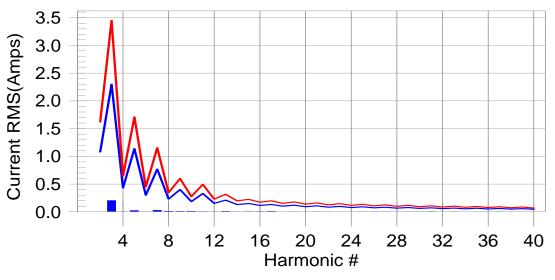
EUT: Cascaded Storage Server (P/S: PWS-920P-1R)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/11/2012Start time: 1:06:15 PMEnd time: 1:07:36 PMTest duration (min): 1Data file name: H-000382.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.							
THC(A)	Test Result: PassSource qualification: NormalTHC(A): 0.27I-THD(%): 22.13POHC(A): 0.014POHC Limit(A): 0.302Highest parameter values during test:						
	V_RMS (Volts			Frequency(Hz)			
	I_Peak (Amps			I_RMS (Amps)			
	I_Fund (Amp			Crest Factor:	1.857		
	Power (Watts): 279.8		Power Factor:	0.965		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	1.080	0.0	0.002	1.620	0.14	Pass
3	0.263	2.300	11.4	0.265	3.450	7.67	Pass
4	0.002	0.430	0.0	0.002	0.645	0.36	Pass
5	0.033	1.140	2.9	0.034	1.710	1.98	Pass
6	0.003	0.300	0.0	0.003	0.450	0.73	Pass
7	0.041	0.770	5.3	0.041	1.155	3.56	Pass
8	0.004	0.230	0.0	0.004	0.345	1.30	Pass
9	0.016	0.400	4.1	0.018	0.600	2.96	Pass
10	0.006	0.184	3.4	0.008	0.276	2.75	Pass
11	0.017	0.330	5.1	0.019	0.495	3.82	Pass
12	0.005	0.153	0.0	0.006	0.230	2.73	Pass
13	0.005	0.210	0.0	0.006	0.315	1.91	Pass
14	0.002	0.131	0.0	0.003	0.197	1.42	Pass
15	0.008	0.150	5.0	0.008	0.225	3.67	Pass
16	0.002	0.115	0.0	0.003	0.173	1.49	Pass
17	0.005	0.132	0.0	0.006	0.199	2.97	Pass
18	0.002	0.102	0.0	0.003	0.153	1.66	Pass
19	0.007	0.118	0.0	0.007	0.178	4.02	Pass
20	0.002	0.092	0.0	0.002	0.138	1.64	Pass
21	0.004	0.107	0.0	0.004	0.161	2.65	Pass
22	0.002	0.084	0.0	0.002	0.125	1.74	Pass
23	0.005	0.098	0.0	0.006	0.147	4.40	Pass
24	0.002	0.077	0.0	0.002	0.115	2.15	Pass
25	0.007	0.090	0.0	0.007	0.135	5.29	Pass
26 27	0.002 0.007	0.071 0.083	0.0 8.8	0.002 0.008	0.106 0.125	1.99 6.63	Pass Pass
28	0.007	0.065	0.0	0.003	0.125	3.26	Pass
20 29	0.003	0.078	10.8	0.003	0.099	8.10	Pass
30	0.003	0.061	0.0	0.003	0.092	3.61	Pass
31	0.009	0.073	12.1	0.010	0.109	8.87	Pass
32	0.003	0.058	0.0	0.004	0.086	4.37	Pass
33	0.005	0.068	0.0	0.005	0.102	5.10	Pass
34	0.002	0.054	0.0	0.003	0.081	3.46	Pass
35	0.005	0.064	0.0	0.005	0.096	5.39	Pass
36	0.002	0.051	0.0	0.003	0.077	3.47	Pass
37	0.007	0.061	11.3	0.008	0.091	8.77	Pass
38	0.002	0.048	0.0	0.003	0.073	3.69	Pass
39	0.004	0.058	0.0	0.004	0.087	5.12	Pass
40	0.001	0.046	0.0	0.001	0.069	2.12	Pass

Voltage Source Verification Data (Run time)


EUT: Cascaded Storage Server (P/S: PWS-920P-1R)Tested by: Alika HiranoTest category: Class-A per Ed. 3.2 (2009) (European limits)Test date: 4/11/2012Start time: 1:06:15 PMTest Margin: 100Test duration (min): 1Data file name: H-000382.cts_dataEnd time: 1:07:36 PMComment: J87050/T87058Customer: Supermicro Computer, Inc.									
Test Result	Test Result: Pass Source qualification: Normal								
	Highest parameter values during test:								
	tage (Vrms): 229.97	Freq	uency(Hz): 50.0						
	eak (Amps): 2.365		S (Amps): 1.28						
	und (Amps): 1.228		t Factor: 1.85						
Pov	ver (Watts): 279.8	Powe	er Factor: 0.96	5					
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status					
2	0.056	0.460	12.11	OK					
3	0.499	2.070	24.13	OK					
4	0.019	0.460	4.05	OK					
5	0.029	0.920	3.15	OK					
6	0.024	0.460	5.33	OK					
7	0.037	0.690	5.34	OK					
8	0.006	0.460	1.38	OK					
9	0.060	0.460	13.14	OK					
10	0.007	0.460	1.45	OK					
11	0.030	0.230	13.17	OK					
12	0.011	0.230	4.57	OK					
13	0.010	0.230	4.20	ŌK					
14	0.004	0.230	1.69	ŌK					
15	0.006	0.230	2.59	OK					
16	0.007	0.230	2.98	ÖK					
17	0.014	0.230	6.30	OK					
18	0.007	0.230	3.16	OK					
19	0.014	0.230	5.97	ŎK					
20	0.009	0.230	4.05	OK					
21	0.010	0.230	4.14	ÖK					
22	0.003	0.230	1.47	ŎK					
23	0.010	0.230	4.40	OK					
24	0.006	0.230	2.81	OK					
25	0.008	0.230	3.50	ŌK					
26	0.004	0.230	1.78	OK					
27	0.006	0.230	2.69	OK					
28	0.003	0.230	1.15	OK					
29	0.008	0.230	3.61	OK					
30	0.005	0.230	2.09	OK					
31	0.012	0.230	5.21	OK					
32	0.004	0.230	1.83	ŌK					
33	0.007	0.230	2.84	OK					
34	0.004	0.230	1.69	ŌK					
35	0.007	0.230	3.02	OK					
36	0.004	0.230	1.57	ŌK					
37	0.012	0.230	5.03	ŌK					
38	0.005	0.230	2.14	OK					
39	0.004	0.230	1.84	OK					
40	0.010	0.230	4.23	ŌK					

Harmonics (per EN 61000-3-2:2006 + A1:2009 + A2:2009) – Class-A per Ed. 3.2 (2009)(Run time) incl. inter-harmonics

EUT: SSG-6047R-E1R24NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 6:29:37 PMEnd time: 6:30:58 PMTest duration (min): 1Data file name: H-000371.cts_dataComment: J87050/T87058Customer: Supermicro Computer


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

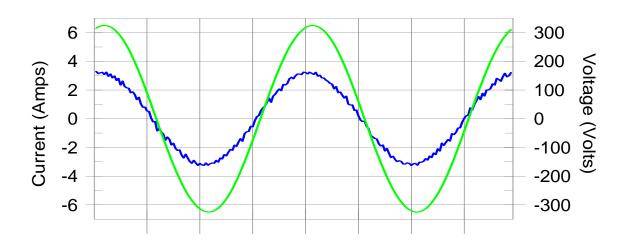
European Limits

Test result: Pass Worst harmonic was #3 with 8.74% of the limit.

Current Test Result Summary (Run time)

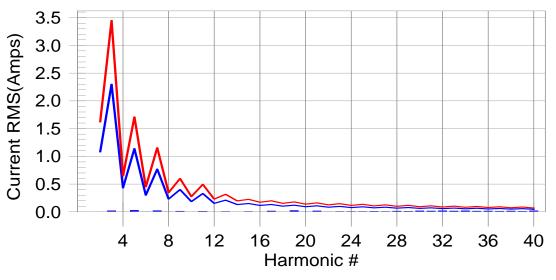
EUT: SSG-6047R-E1R24NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 6:29:37 PMEnd time: 6:30:58 PMTest duration (min): 1Data file name: H-000371.cts_dataComment: J87050/T87058Customer: Supermicro Computer							
Test Result: Pass Source qualification: Normal THC(A): 0.21 I-THD(%): 23.92 POHC(A): 0.000 POHC Limit(A): 0.320 Highest parameter values during test:							
U	V_RMS (Volts):			Frequency(Hz)	: 50.00		
	I_Peak (Amps):			I_RMS (Amps):	0.908		
	I_Fund (Amps):			Crest Factor:	1.891		
	Power (Watts):	196.9		Power Factor:	0.950		
Harm#	Harms(avg) 1	00%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	1.080	0.0	0.003	1.620	0.15	Pass
3	0.201	2.300	8.7	0.204	3.450	5.92	Pass
4	0.003	0.430	0.0	0.004	0.645	0.56	Pass
5	0.024	1.140	2.1	0.024	1.710	1.43	Pass
6	0.003	0.300	0.0	0.004	0.450	0.87	Pass
7	0.028	0.770	3.6	0.029	1.155	2.49	Pass
8	0.010	0.230	4.2	0.011	0.345	3.17	Pass
9	0.007	0.400	1.7	0.008	0.600	1.39	Pass
10	0.010	0.184	5.3	0.011	0.276	4.02	Pass
11	0.006	0.330	1.7	0.006	0.495	1.19	Pass
12	0.004	0.153	0.0	0.005	0.230	2.08	Pass
13	0.007	0.210	3.4	0.007	0.315	2.36	Pass
14	0.002	0.131	0.0	0.003	0.197	1.65	Pass
15	0.005	0.150	3.5	0.006	0.225	2.49	Pass
16 17	0.004 0.008	0.115 0.132	0.0 5.9	0.005 0.008	0.173 0.199	3.03 3.99	Pass Pass
18	0.002	0.132	0.0	0.008	0.153	1.29	Pass
19	0.002	0.102	0.0	0.002	0.178	2.75	Pass
20	0.002	0.092	0.0	0.003	0.138	1.80	Pass
21	0.002	0.002	0.0	0.002	0.161	2.79	Pass
22	0.003	0.084	0.0	0.004	0.125	2.84	Pass
23	0.001	0.098	0.0	0.002	0.147	1.10	Pass
24	0.002	0.077	0.0	0.002	0.115	1.87	Pass
25	0.003	0.090	0.0	0.004	0.135	2.69	Pass
26	0.003	0.071	0.0	0.004	0.106	3.66	Pass
27	0.004	0.083	0.0	0.004	0.125	3.49	Pass
28	0.002	0.066	0.0	0.003	0.099	2.73	Pass
29	0.005	0.078	0.0	0.005	0.116	4.41	Pass
30	0.004	0.061	0.0	0.004	0.092	4.67	Pass
31	0.005	0.073	6.8	0.005	0.109	4.77	Pass
32	0.002	0.058	0.0	0.003	0.086	3.14	Pass
33	0.004	0.068	0.0	0.004	0.102	3.93	Pass
34	0.002	0.054	0.0	0.002	0.081	2.93	Pass
35 36	0.002 0.002	0.064 0.051	0.0 0.0	0.002 0.002	0.096	2.59 2.55	Pass
30 37	0.002	0.051	0.0	0.002	0.077 0.091	2.55	Pass Pass
38	0.003	0.061	0.0	0.003	0.091	3.45	Pass
39	0.002	0.048	0.0	0.003	0.073	3.48	Pass
40	0.001	0.036	0.0	0.003	0.069	1.58	Pass

Voltage Source Verification Data (Run time)


EUT: SSG-6047R-E1R24NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 6:29:37 PMEnd time: 6:30:58 PMTest duration (min): 1Data file name: H-000371.cts_dataComment: J87050/T87058Customer: Supermicro Computer									
Test Result:	: Pass Source qua	alification: Norm	al						
	Highest parameter values during test:								
Volt	age (Vrms): 229.92		uency(Hz): 50.00						
	eak (Àmps): 1.696		S (Amps): 0.908						
	ind (Amps): 0.877		t Factor: 1.891						
Pow	ver (Watts): 196.9	Powe	er Factor: 0.950						
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status					
2	0.036	0.460	7.77	OK					
3	0.494	2.069	23.88	OK					
4	0.025	0.460	5.37	OK					
5	0.032	0.920	3.44	OK					
6	0.027	0.460	5.93	OK					
7	0.032	0.690	4.58	ÖK					
8	0.010	0.460	2.14	ŎK					
9	0.051	0.460	11.13	ŎK					
10	0.009	0.460	1.89	ŎK					
11	0.017	0.230	7.58	ŎK					
12	0.010	0.230	4.50	ŎK					
13	0.005	0.230	2.11	ŎK					
14	0.004	0.230	1.83	ÖK					
15	0.008	0.230	3.49	ÖK					
16	0.008	0.230	3.54	ŎK					
17	0.006	0.230	2.82	ŎK					
18	0.008	0.230	3.63	OK					
19	0.009	0.230	4.11	ŎK					
20	0.009	0.230	4.02	ŎK					
21	0.009	0.230	3.94	ŎK					
22	0.006	0.230	2.44	ŎK					
23	0.011	0.230	4.97	OK					
24	0.005	0.230	2.05	OK					
25	0.003	0.230	1.50	ŌK					
26	0.005	0.230	2.29	OK					
27	0.008	0.230	3.35	OK					
28	0.004	0.230	1.66	OK					
29	0.010	0.230	4.15	OK					
30	0.004	0.230	1.89	OK					
31	0.007	0.230	3.23	OK					
32	0.003	0.230	1.19	OK					
33	0.007	0.230	2.91	OK					
34	0.003	0.230	1.25	OK					
35	0.003	0.230	1.24	OK					
36	0.003	0.230	1.33	OK					
37	0.005	0.230	2.29	OK					
38	0.003	0.230	1.11	OK					
39	0.006	0.230	2.78	OK					
40	0.010	0.230	4.18	OK					

Harmonics (per EN 61000-3-2:2006 + A1:2009 + A2:2009) – Class-A per Ed. 3.2 (2009)(Run time) incl. inter-harmonics

EUT: SSG-6047R-E1R36NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 7:19:09 PMEnd time: 7:20:31 PMTest duration (min): 1Data file name: H-000375.cts_dataComment: J87050/T87058Customer: Supermicro Computer


Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line

European Limits

Test result: Pass Worst harmonic was #40 with 41.54% of the limit.

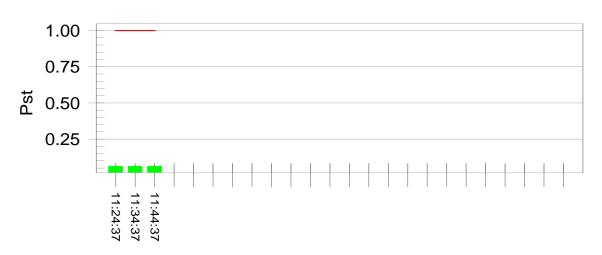
Current Test Result Summary (Run time)

EUT: SSG-6047R-E1R36NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 7:19:09 PMEnd time: 7:20:31 PMTest duration (min): 1Data file name: H-000375.cts_dataComment: J87050/T87058Customer: Supermicro Computer							
Test Result: Pass Source qualification: Normal THC(A): 0.08 I-THD(%): 3.59 POHC(A): 0.050 POHC Limit(A): 0.262 Highest parameter values during test:							
•	V_RMS (Volts)			Frequency(Hz)	: 50.00		
	I_Peak (Amps)			I_RMS (Amps)	: 2.155		
	I_Fund (Amps)			Crest Factor:	1.545		
	Power (Watts)	: 482.7		Power Factor:	0.990		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	1.080	0.0	0.003	1.620	0.18	Pass
3	0.020	2.300	0.9	0.021	3.450	0.61	Pass
4	0.003	0.430	0.0	0.003	0.645	0.48	Pass
5	0.028	1.140	2.5	0.029	1.710	1.69	Pass
6	0.003	0.300	0.0	0.003	0.450	0.72	Pass
7	0.022	0.770	2.9	0.022	1.155	1.94	Pass
8	0.003	0.230	0.0	0.003	0.345	0.98	Pass
9	0.011	0.400	0.0	0.012	0.600	1.99	Pass
10	0.003	0.184	0.0	0.003	0.276	1.10	Pass
11	0.011	0.330	0.0	0.011	0.495	2.25	Pass
12	0.002	0.153	0.0	0.003	0.230	1.17	Pass
13	0.007	0.210	0.0	0.007	0.315	2.28	Pass
14	0.003	0.131	0.0	0.003	0.197	1.46	Pass
15	0.006	0.150	0.0	0.007	0.225	2.97	Pass
16	0.003	0.115	0.0	0.003	0.173	1.68	Pass
17	0.015	0.132	11.3	0.016	0.199	8.04	Pass
18	0.003	0.102	0.0	0.003	0.153	1.95	Pass
19	0.024	0.118	20.2	0.024	0.178	13.72	Pass
20	0.003	0.092	0.0	0.004	0.138	2.71	Pass
21	0.016	0.107	15.2	0.017	0.161	10.35	Pass
22	0.005	0.084	0.0	0.005	0.125	4.06	Pass
23	0.006	0.098	0.0	0.007	0.147	4.70	Pass
24	0.006	0.077	0.0	0.007	0.115	5.99	Pass
25	0.005	0.090	0.0	0.007	0.135	5.17	Pass
26	0.009	0.071	0.0	0.010	0.106	9.31	Pass
27 28	0.006	0.083	0.0 20.7	0.007	0.125	5.58 14.21	Pass Pass
20 29	0.014	0.066		0.014	0.099		Pass
29 30	0.009 0.018	0.078 0.061	0.0 29.7	0.010 0.019	0.116 0.092	8.37 20.25	Pass
30	0.018	0.001	19.6	0.019	0.092	20.25	Pass
31	0.014	0.073	37.0	0.015	0.109	25.23	Pass
32 33			23.1		0.000		
33 34	0.016 0.020	0.068 0.054	37.7	0.016 0.021	0.102	16.07 26.15	Pass Pass
34 35	0.020	0.054 0.064	21.5	0.021	0.081	26.15 14.86	Pass Pass
35 36	0.014	0.064	21.5 31.6	0.014	0.096	21.52	Pass
30 37	0.010	0.051	0.0	0.017	0.077	12.91	Pass
38	0.016	0.081	32.1	0.012	0.091	22.12	Pass
39	0.010	0.048	0.0	0.010	0.073	11.84	Pass
39 40	0.010	0.038	41.5	0.010	0.067	29.00	Pass
TV	0.013	0.040	41.5	0.020	0.003	20.00	1 400

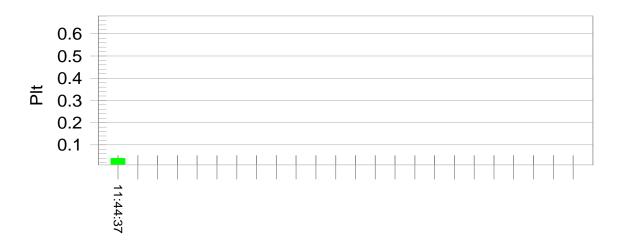
Voltage Source Verification Data (Run time)

EUT: SSG-6047R-E1R36NTested by: Vishal NarayanTest category: Class-A per Ed. 3.2 (2009) (European limits)Test Margin: 100Test date: 4/3/2012Start time: 7:19:09 PMEnd time: 7:20:31 PMTest duration (min): 1Data file name: H-000375.cts_dataComment: J87050/T87058Customer: Supermicro Computer									
Test Result:	Pass Source qua	alification: Norma	al						
	Highest parameter values during test:								
	age (Vrms): 229.90		uency(Hz): 50.00						
	ak (Amps): 3.306		S (Amps): 2.155						
	nd (Amps): 2.117		Factor: 1.545						
Pow	er (Watts): 482.7	Powe	er Factor: 0.990						
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status					
2	0.055	0.460	11.89	ОК					
3	0.487	2.069	23.54	ÖK					
4	0.015	0.460	3.30	ŎK					
5	0.035	0.920	3.84	ŎK					
6	0.025	0.460	5.51	ŎK					
7	0.018	0.690	2.58	ŎK					
8	0.005	0.460	1.00	ŎK					
9	0.048	0.460	10.51	ÖK					
10	0.004	0.460	0.95	ÖK					
11	0.014	0.230	5.98	ÖK					
12	0.009	0.230	4.02	OK					
13	0.005	0.230	2.01	OK					
14	0.005	0.230	2.39	OK					
15	0.008	0.230	3.56	OK					
16	0.008	0.230	3.66	OK					
17	0.000	0.230	6.09	OK					
18	0.008	0.230	3.59	OK					
19	0.008	0.230	9.46	OK					
20	0.022	0.230	5.07	OK					
20	0.012	0.230	6.38	OK					
22	0.015	0.230	3.15	OK					
23	0.007	0.230	5.86	OK					
23	0.005	0.230	2.37	OK					
25	0.005	0.230	2.32	OK					
26	0.005	0.230	3.10	OK					
27	0.007	0.230	3.51	OK					
28	0.004	0.230	1.59	ÖK					
29	0.013	0.230	5.52	ÖK					
30	0.004	0.230	1.88	ÖK					
31	0.010	0.230	4.56	ÖK					
32	0.005	0.230	2.04	ÖK					
33	0.014	0.230	6.23	ŎK					
34	0.005	0.230	1.96	ÖK					
35	0.020	0.230	8.78	ÖK					
36	0.005	0.230	2.00	ÖK					
37	0.018	0.230	7.62	ÖK					
38	0.004	0.230	1.63	ÖK					
39	0.018	0.230	7.91	ÖK					
40	0.011	0.230	4.97	OK					
		0.200							

Appendix D Voltage Fluctuations Test Data Flicker Test Summary (EN(Run time)61000-3-3:2008)


EUT: Cascaded Storage Server (P/S: PWS-1K28P-SQ)Tested by: Alika HiranoTest category: All parameters (European limits)Test Margin: 100Test date: 4/11/2012Start time: 11:13:57 AMEnd time: 11:46:10 AMTest duration (min): 120Data file name: F-000380.cts_dataComment: J87050/T87058Customer: Supermicro Computer, Inc.

Test Result: Pass


Status: Test Aborted

Pst_i and limit line

European Limits

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 229.91

Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Lighant Dit () he nariad). Nata	valueted	Over two cheerwation perio	de the vel	un of Dot

Highest Plt (2 hr. period): Not evaluated. Over two observation periods the value of Pst was less than 0.2, indicating that the device under test did not produce significant voltage fluctuations. As Pst was less than 0.2, Plt would also be less than 0.2.

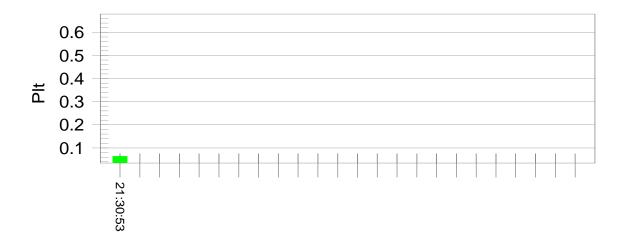
Flicker Test Summary (EN(Run time)61000-3-3:2008)

EUT: Cascaded Storage Server (P/S: PWS-920P-1R) Tested by: Alika Hirano Test category: All parameters (European limits) Test Margin: 100 Test date: 4/11/2012 Start time: 12:30:28 PM End time: 1:02:46 PM Test duration (min): 120 Data file name: F-000381.cts data Comment: J87050/T87058 **Customer: Supermicro Computer, Inc.** Test Result: Pass Status: Test Aborted Pst_i and limit line **European Limits** 1.00 0.75 Pst 0.50 0.25 12:41:08 12:51:08 13:01:08 Plt and limit line 0.6 0.5 0.4 Ъ 0.3 0.2 0.1 13:01:08 Parameter values recorded during the test: Vrms at the end of test (Volt): 229.92 Highest dt (%): 0.00 Test limit (%): 3.30 Pass Test limit (mS): Time(mS) > dt: 0.0 500.0 Pass Highest dc (%): 0.00 Test limit (%): 3.30 Pass Test limit (%): Highest dmax (%): 0.00 4.00 Pass Highest Pst (10 min. period): 1.000 0.064 **Test limit:** Pass Highest Plt: Not evaluated. Over two observation periods the value of Pst was less than 0.2,

indicating that the device under test did not produce significant voltage fluctuations. As Pst was less than 0.2, less than 0.2, Plt would also be less than 0.2.

Flicker Test Summary (EN(Run time)61000-3-3:2008)

EUT: SSG-6047R-E1R24N **Tested by: Vishal Narayan** Test category: All parameters (European limits) Test date: 4/3/2012 Start time: 6:45:52 Test Margin: 100 Start time: 6:45:52 PM End time: 7:11:19 PM Test duration (min): 120 Data file name: F-000372.cts_data Comment: J87050/T87058 **Customer: Supermicro Computer** Test Result: Pass **Status: Test Aborted** Pst_i and limit line **European Limits** 1.00 0.75 Pst 0.50 0.25 18:56:32 19:06:32 Plt and limit line 0.6 0.5 0.4 ΡĘ 0.3 0.2 0.1 19:06:32

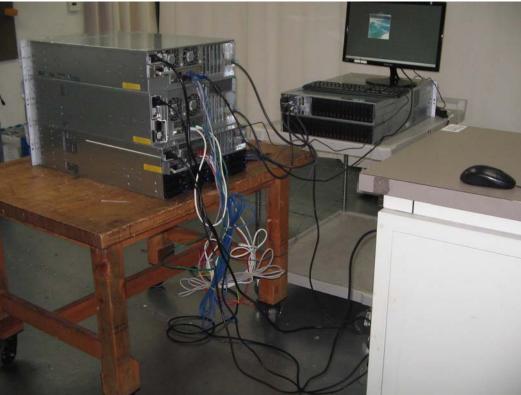

Parameter values recorded during the test: Vrms at the end of test (Volt): 229.91 Highest dt (%): 0.00

Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dť:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.035	Test limit:	0.650	Pass

Flicker Test Summary (EN(Run time)61000-3-3:2008)

EUT: SSG-6047R-E1R36N **Tested by: Vishal Narayan** Test category: All parameters (European limits) Test date: 4/3/2012 Start time: 7:30:13 Test Margin: 100 Start time: 7:30:13 PM End time: 9:30:54 PM Test duration (min): 120 Data file name: F-000376.cts_data Comment: J87050/T87058 **Customer: Supermicro Computer** Test Result: Pass **Status: Test Completed** Pst_i and limit line **European Limits** 1.00 0.75 Pst 0.50 0.25 19:50:53 20:10:53 20:40:53 21:00:53 20:30:53 20:50:53 21:10:53 21:20:53 19:40:53 20:00:53 20:20:53 21:30:53

Plt and limit line



Parameter values recorded during the test: Vrms at the end of test (Volt): 229.88 Highest dt (%): 0.00

Highest dt (%):	0.00	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.064	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.064	Test limit:	0.650	Pass

Appendix E AC Current Harmonics and Voltage Fluctuations Test Configuration Photographs



SSG-6047R-E1R36N

Report Date: May 2, 2012

Appendix F Product Labeling Requirements

The following information has been provided to clarify notification, equipment labeling requirements and information that must be included in the operator's manual. These requirements may be found in the standards/regulations listed in the scope of this report.

Label Location

The required label(s) must be in a *conspicuous location* on the product, which is defined as any location readily visible to the user of the device without the use of tools.

Label Attachment

The label(s) must be *permanently attached* to the product, which is defined as attached such that it can normally be expected to remain fastened to the equipment during the equipment's expected useful life. A paper gum label will generally <u>not</u> meet this condition.

United States Class A Label

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

European and Australian Class A Label

Warning - This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Japanese Class A Label

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用する と電波妨害を引き起こすことがあります。この場合には使用者が適切な対策 を講ずるよう要求されることがあります。 VCCI-A

The English translation for the labeling text is: *This is a Class A product. In a domestic* environment this product may cause radio interference in which case the user may be required to take adequate measures.

Industry Canada

For ICES-003 (digital apparatus), the product must be labeled with a notice indicating compliance e.g.

This Class A digital apparatus complies with Canadian ICES-003

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada

If there is limited space on the product then the text may be placed in the manual.

Appendix G User Manual Regulatory Statements

Where special accessories, such as shielded cables, are required in order to meet the emission limits, appropriate instructions regarding the need to use such accessories must be contained on the first page of text concerned with the installation of the device in the operator's manual.

A requirement by FCC regulations, and recommended for all regulatory markets, is a cautionary statement to the end user that changes or modifications to the device not expressly approved by you, the manufacturer, could void their right to operate the equipment.

United States Class A Manual Statement

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Note: Additional information about corrective measures may also be provided to the user at the company's option.

The FCC has indicated that the radio interference statement be bound in the same manner as the operator's manual. Thus, a loose-leaf insert page in a bound or center-spine and stapled manual would <u>not</u> meet this condition.

European and Australian Class A Manual Statement

Warning - This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Note: This statement is not required if it is provided on a label affixed to the product.

Japanese Class A Manual Statement

この装置は、クラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害 を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求され ることがあります。 VCCI-A

The English translation for the text is: *This is a Class A product based on the standard of the VCCI Council. If this equipment is used in a domestic environment, radio interference may occur, in which case, the user may be required to take corrective actions.*

Appendix H Additional Information for VCCI

The VCCI requires a notification for each product sold with the VCCI label. A notification letter on your company letterhead with 2 copies of Form 1 must be sent to the VCCI in Japan at the following address:

Voluntary Control Council for Interference by Information Technology Equipment NOA Building, 7th Floor 3-5 Azabudai 2-chome, Minato-ku, Tokyo 106-0041, Japan

You may also submit the form electronically on the VCCI web site http://www.vcci.or.jp/vcci_e/member/index.html. Go to "Documents and Forms, Report of Compliance" in Members only section. Enter your username and password and click "OK". Then click "Please click here if you submit report of compliance electronically" to open the submission form. Fill all required columns and click "CONFIRM" after making sure everything is filled properly.

Appendix I Additional Information for Australia and New Zealand

In Australia, an application to use the C-Tick mark must be made by the importer of the product. The importer must hold a Declaration of Conformity and compliance folder, of which this report forms a part, for each product sold with a C-Tick mark.

The European harmonized standards and international (CISPR/IEC) standards are acceptable for demonstrating compliance with the Australian/New Zealand compliance framework. This is explained in the document "Electromagnetic Compatibility - Information for suppliers of electrical and electronic products in Australia and New Zealand", dated July 2003. While this document is being revised information can be found on the Australian Communications and Media Authority (ACMA) website by following links from their homepage (http://www.acma.gov.au/WEB/HOMEPAGE/pc=HOME) to EMC compliance & labeling regulatory arrangements.

Appendix J Basic and Reference Standards

Subpart B of Part 15 of FCC Rules for digital devices.

FCC Part 15 Subpart B references the use of ANSI C63.4–2003: "*Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz*" for the purposes of evaluating the radiated and conducted emissions from digital devices.

VCCI Regulations For Information Technology Equipment, dated April 2009

The VCCI Regulations For Voluntary Control Measures of radio interference generated by Information Technology Equipment make reference to the following National and International standards for the purposes of making measurements. Elliott's test procedures associated with measurements against VCCI rules use these standards in addition to the procedures laid out in the VCCI regulations.

Standard	Description / Title
CISPR 22: Ed 5.2:2006	Information Technology Equipment - Radio disturbance characteristics - Limits and
	methods of measurement
CISPR 16-1-1 Ed2.1:2006	Specification for radio disturbance and immunity measuring apparatus and method -
	Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus.
CISPR 16-1-2 Ed1.2:2006	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 1-2: Radio disturbance and immunity measuring apparatus – Measuring
	apparatus – Ancillary equipment – Conducted disturbances
CISPR 16-1-4 Ed2.0:2007	Specification for radio disturbance and immunity measuring apparatus and methods
	-Part 1-4: Radio disturbance and immunity measuring apparatus - Ancillary
	equipment – Radio disturbances
CISPR 16-2-3 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods -
	Part 2-3: Methods of measurement of disturbance and immunity – Radiated
	disturbance measurements
CISPR 16-4-2 Ed1.0:2003	Specification for radio disturbance and immunity measuring apparatus and methods –
	Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC
	measurements
ANSI C63.4:2003	American National Standard for Method of Measurement of Radio Noise Emissions
	from Low Voltage Electrical and Electronic Equipment in the Range 9kHz to 40
	GHz.

EN 55022:2010

EN 55022 references various international and European standards to be used when making the required measurements. The references all cite dated versions of the standards, therefore the editions cited are used.

International and EN equivalent standard	Description	Standard Used
CISPR 16-1-1:2006 +A1:2006 EN 55016-1-1:2007 +A1:2007	Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus - Measuring apparatus	CISPR 16-1-1 2006 +A1:2006 +A2:2007
CISPR 16-1-2:2003 +A1:2004 +A2:2006 EN 55016-1-2:2004 +A1:2005 +A2:2006	Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Conducted disturbances	CISPR 16-1-2:2003 +A1:2004 +A2:2006
CISPR 16-1-4:2007 EN 55016-1-4: 2007	Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus - Ancillary equipment - Radiated disturbances	CISPR 16-1-4:2007
CISPR 16-2-3:2003 +A1:2005 EN 55016-2-3:2004 +A1:2005	Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements	CISPR 16-2-3:2006
CISPR 16-4-2:2003 EN 55016-4-2 2004	Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling - Uncertainty in EMC measurements	CISPR 16-4-2:2003
intentional or the EN s EN version is used. F	al publication has been modified by common modifications, indicated standard may be used. Where the EN standard differs from the intenti- or all of the standards listed above there are no common modification national version of all standards listed.	ional standard then the

CISPR 22:2008

CISPR 22 references various IEC basic standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions are used.

International and EN equivalent	Description	Standard Used	
standard			
CISPR 16-1-1:2006	Specification for radio disturbance and immunity measuring	CISPR 16-1-1:2006	
+A1:2006	apparatus and methods – Part 1-1: Radio disturbance and	+A1:2006	
+A2:2007	immunity measuring apparatus - Measuring apparatus	+A2:2007	
EN 55016-1-1:2007			
+A1:2007			
+A2:2008			
CISPR 16-1-2:2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-2:2003	
+A1:2004	apparatus and methods –Part 1-2: Radio disturbance and immunity	+A1:2004	
+A2:2006	measuring apparatus - Ancillary equipment - Conducted	+A2:2006	
EN 55016-1-2 2004	disturbances		
+ A1 2005			
CISPR 16-1-4:2007	Specification for radio disturbance and immunity measuring	CISPR 16-1-4:2007	
EN 55016-1-4: 2007	apparatus and methodsPart 1-4: Radio disturbance and immunity		
	measuring apparatus - Ancillary equipment - Radiated		
	disturbances		
CISPR 16-2-3:2006	Specification for radio disturbance and immunity measuring	CISPR 16-2-3:2006	
EN 55016-2-3:2006	apparatus and methods -Part 2-3: Methods of measurement of		
	disturbances and immunity – Radiated disturbance measurements		
CISPR 16-4-2 2003	Specification for radio disturbance and immunity measuring	CISPR 16-4-2 2003	
EN 55016-4-2 2004	apparatus and methods –Part 4-2: Uncertainties, statistics and limit		
	modeling - Uncertainty in EMC measurements		
Unless the international publication has been modified by common modifications, indicated by (mod), either the			
intentional or the EN standard may be used. Where the EN standard differs from the intentional standard then the			
EN version is used. For all of the standards listed above there are no common modifications therefore Elliott			
makes use of the intern	makes use of the international version of all standards listed.		

EN 55024:2010

EN 55024 references various European standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions (or its international equivalent) are used.

Referenced standard	Description	Standard Used
IEC 60050-161:1990	International Electrotechnical Vocabulary (IEV) -	IEC 60050-161:1990
	Chapter 161: Electromagnetic compatibility	
IEC 60318-1:2009	Electroacoustics - Simulators of human head and ear -	N/A
EN 60318-1:2009	Part 1: Ear simulator for the measurement of supra-aural and	(The EUT tested did
	circumaural earphones	not require the use of
		an ear simulator)
IEC 61000-4-2:2008	Electromagnetic compatibility (EMC) Part 4: Testing and	IEC 61000-4-2:2008
EN 61000-4-2:2009	measurement techniques -" Section 2: Electrostatic discharge	EN 61000-4-2:2009
	immunity test	
IEC 61000-4-3:2006	Section 3: Radiated, radio-frequency, electromagnetic field	IEC 61000-4-3:2006
+A1:2007	immunity test	A1:2007
+A2:2010		A2:2010
EN 61000-4-3:2006		EN 61000-4-3:2006
+A1 :2008		A1:2008
+A2 :2010		A2:2010
IEC 61000-4-4:2004	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004
EN 61000-4-4 :2004		A1:2010
		EN 61000-4-4:2004
		A1:2010
IEC 61000-4-5: 2005	Section 5: Surge immunity test	IEC 61000-4-5:2005
EN 61000-4-5 :2006		EN 61000-4-5:2006
IEC 61000-4-6 :2008	Section 6: Immunity to conducted disturbances, induced by	IEC 61000-4-6:2008
EN 61000-4-6 :2009	radio-frequency fields	EN 61000-4-6:2009
IEC 61000-4-8 :2009	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8 2009
EN 61000-4-8 :2010		EN 61000-4-8:2010
IEC 61000-4-11:2004	Section 11: Voltage dips, short interruptions and voltage	IEC 61000-4-11:2004
EN 61000-4-11:2004	variations immunity tests	EN 61000-4-11:2004
CISPR 16-1-2 :2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-2 :2003
A+1 :2004	apparatus and methods - Part 1-2: Radio disturbance and	A+1 :2004
+A2 :2006	immunity measuring apparatus - Ancillary equipment -	+A2 :2006
EN 55016-1-2 :2004	Conducted disturbances	EN 55016-1-2 :2004
+A1 :2005		+A1 :2005
+A2 :2006		+A2 :2006
CISPR 20 :2006	Sound and television broadcast receivers and associated	CISPR 20 :2006
EN 55020 :2007	equipment – Immunity characteristics - Limits and methods of	EN 55020 :2007
	measurement	
CISPR 22 :2008 (mod)	Information technology equipment – Radio disturbance	CISPR 22 :2008 (mod)
EN 55022 2010	characteristics - Limits and methods of measurement	EN 55022 2010

CISPR 24:2010

CISPR 24 references various IEC basic standards to be used when making the required measurements. When the referenced standard is cited by version (date or revision) then that version is used except where noted. In instances where the standards are referenced without citing the version to be used, the current versions are used.

Referenced standard	Description	Standard Used	
IEC 60050-161:1990	International Electrotechnical Vocabulary (IEV) -	IEC 60050-161:1990	
	Chapter 161: Electromagnetic compatibility		
IEC 60318-1:2009	Electroacoustics - Simulators of human head and ear -	N/A	
	Part 1: Ear simulator for the measurement of supra-aural and	(The EUT tested did	
	circumaural earphones	not require the use of	
	Ĩ	an ear simulator)	
IEC 61000-4-2:2008	Electromagnetic compatibility (EMC) Part 4: Testing and	IEC 61000-4-2:2008	
	measurement techniques -" Section 2: Electrostatic discharge	EN 61000-4-2:2009	
	immunity test		
IEC 61000-4-3:2006	Section 3: Radiated, radio-frequency, electromagnetic field	IEC 61000-4-3:2006	
+A1:2007	immunity test	+A1:2007	
+A2:2010		+A2:2010	
		EN 61000-4-3:2006	
		+A1:2008	
		+A2:2010	
IEC 61000-4-4:2004	Section 4: Electrical fast transient/burst immunity test	IEC 61000-4-4:2004	
		+A1:2010	
		EN 61000-4-4:2004	
		+A1:2010	
IEC 61000-4-5: 2005	Section 5: Surge immunity test	IEC 61000-4-5:2005	
		EN 61000-4-5:2006	
IEC 61000-4-6 :2008	Section 6: Immunity to conducted disturbances, induced by	IEC 61000-4-6:2008	
	radio-frequency fields	EN 61000-4-6:2009	
IEC 61000-4-8 :2009	Section 8: Power frequency magnetic field immunity test	IEC 61000-4-8:2009	
		EN 61000-4-8:2010	
IEC 61000-4-11:2004	Section 11: Voltage dips, short interruptions and voltage	IEC 61000-4-11:2004	
	variations immunity tests	EN 61000-4-11:2004	
CISPR 16-1-2 :2003	Specification for radio disturbance and immunity measuring	CISPR 16-1-2:2003	
+A1 :2004	apparatus and methods - Part 1-2: Radio disturbance and	+A1 :2004	
+A2 :2006	immunity measuring apparatus - Ancillary equipment -	+A2 :2006	
	Conducted disturbances	EN 55016-1-2:2004	
		+A1:2005	
		+A2:2006	
CISPR 20 :2006	Sound and television broadcast receivers and associated	CISPR 20:2006	
	equipment – Immunity characteristics - Limits and methods of	EN 55020:2007	
	measurement		
CISPR 22 :2008	Information technology equipment – Radio disturbance	CISPR 22 :2008 (mod)	
	characteristics - Limits and methods of measurement	EN 55022 :2010	

End of Report

This page is intentionally blank and marks the last page of this test report.