

Issue Date: Ref. Report No. 2009/04/16 ISL-09HE104FB

Product Name:	:	Network Attached Storage
Model Number(s)	:	Please reference the attachment
Responsible Party	:	QNAP Systems, Inc.
Address	:	21F,No.77,Sec. 1,Xintai 5th Rd.
		Xizhi City, Taipei Country, 221 Taiwan, R.O.C
Contact Person	:	

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified. (refer to Test Report if any modifications were made for compliance).

Standards:

FCC CFR Title 47 Part 15 Subpart B: 2008- Section 15.107 and 15.109 ANSI C63.4-2003 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 4: 2004 Class B

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

We certify that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988.21 U.S.C. 853(a)

m Chu

Jim Chu/ Director

International Standards Laboratory Lung-Tan LAB: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325,

Taiwan Tel: 886-3-407-1718; Fax: 886-3407-1738 **Hsi-Chih LAB**: No. 65, Gu Dai Keng St.. Hsichih, Taipei Hsien 22117, Taiwan.

Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Declaration of Conformity

This device complies with Part 15 of the FCC Rules. The test result has been shown in the ISL test report with number ISL-09HE104FB. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Product Name:	Network Attached Storage
Model:	Please reference the attachment
Name of Responsible Party:	QNAP Systems, Inc.
Address of Responsible Party:	21F,No.77,Sec. 1,Xintai 5th Rd. Xizhi City,Taipei Country,221 Taiwan,R.O.C
Contact Person:	
Phone No.:	(02)8698-2000 Ext:1616
Fax No.:	(02)8698-2270

We, QNAP Systems, Inc., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable FCC Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the Commissions requirements.

QNAP Systems, Inc. Issue Date: 2009/04/16

FCC TEST REPORT

CFR 47 Part 15 Subpart B Class B

Application Type: Declaration of ConformityProduct :Network Attached StorageModel(s):Please reference the attachmentApplicant:QNAP Systems, Inc.Address:21F,No.77,Sec. 1,Xintai 5th Rd.
Xizhi City,Taipei Country,221
Taiwan,R.O.C


```
NVLAP LAB CODE: 200234-0
```

Test Performed by:

International Standards Laboratory

<HC LAB> *Site Registration No. BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178; IC: IC4067; VCCI: R-341,C-354, T-313; NEMKO: ELA 113A

*Address: No. 65, Gu Dai Keng St. Hsichih, Taipei Hsien 22117, Taiwan *Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: **ISL-09HE104FB** Issue Date : **2009/04/16**

ISL International Standards Laboratory

-i- Declaration of Conformity

Contents of Report

1. General	1
1.1 Certification of Accuracy of Test Data	1
1.2 Applicant Information	2
1.3 Operation Environment	2
2. Description of EUT	3
3. Description of Support Equipment	5
3.1 Description of Support Equipment	5
3.2 Software for Controlling Support Unit	6
3.3 I/O Cable Condition of EUT and Support Units	7
4. Powerline Conducted Emissions	8
4.1 Configuration and Procedure	8
4.1.1 EUT Configuration	8
4.1.2 Test Procedure	8
4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	8
4.2 Conduction Test Data: Configuration 1	9
4.3 Conduction Test Data: Configuration 2	11
4.4 Conduction Test Data: Configuration 3	13
4.5 Conduction Test Data: Configuration 4	15
5. Open Field Radiated Emissions	17
5.1 Configuration and Procedure	17
5.1.1 EUT Configuration	17
5.1.2 Test Procedure	17
5.2 Radiation Test Data: Configuration 1	17
5.3 Radiation Test Data: Configuration 2	
5.4 Radiation Test Data: Configuration 3	
5.5 Radiation Test Data: Configuration 4	
6. Appendix	.34
6.1 Appendix A: Warning Labels	
6.2 Appendix B: Warning Statement	
6.3 Appendix C: Measurement Procedure for Powerline Conducted Emissions	
6.4 Appendix D: Test Procedure for Radiated Emissions	37
6.5 Appendix E: Test Equipment	38
6.5.1 Test Equipment List	38
6.5.2 Software for Controlling Spectrum/Receiver and Calculating Test Data	38
6.6 Appendix F: Layout of EUT and Support Equipment	40
6.6.1 General Conducted Test Configuration	40
6.6.2 General Radiation Test Configuration	41
6.9 Appendix U: Uncertainty of Measurement	4 <i>L</i>
6.0 Appendix I: Photographs of EUT Diagonarates to the Eile of ISL 0011E104D	43
0.9 Appendix I: Photographs of EU1 Please refer to the File of ISL-09HE104P	49 50
	. 50

1. General

1.1 Certification of Accuracy of Test Data

Standards:	 FCC CFR Title 47 Part 15 Subpart B: 2008- Section 15.107 and 15.109 ANSI C63.4-2003 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 4: 2004
Equipment Tested:	Network Attached Storage
Model:	Please reference the attachment
Applied by	QNAP Systems, Inc.
Sample received Date:	2009/04/15
Final test Date :	refer to the date of test data
Test Result:	PASS
Report Engineer:	Lily L.C. Tseng
Test Engineer:	Andy sh Chen

Andy SH Chen

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the radiated and power line conducted electromagnetic emissions generated by sample equipment under test at the time of the test.

The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Jim Chu / Director

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 52 pages, including 1 cover page, 1 contents page, and 50 pages for the test description. This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

1.2 Applicant Information

Applicant:	QNAP Systems, Inc.
	21F,No.77,Sec. 1,Xintai 5th Rd.
	Xizhi City, Taipei Country, 221
	Taiwan, R.O.C

1.3 Operation Environment

Test Site:	OATS 01; Conduction 01	
Test Distance	10M	
Temperature Humidity:	refer to each site test data refer to each site test data	
input power:	Conduction input power: Radiation input power:	AC 120 V / 60 Hz AC 120 V / 60 Hz

2. Description of EUT

EUT

Description:	Network Attached Storage		
Condition:	Pre-Production		
Model:	Please reference the attachment		
Serial Number:	N/A		
Power Supply Type:	ETASIS (Model: EFRP-M300)*2 & EFRP-M2300 *1 AC INPUT: 100~240V 5-2.5A, 47~63Hz DC OUTPUT:		
	+5V 20A		
	+3.3V20A		
	+12V 22A		
	-12V 0.8A		
	+5VSB 3A		
	+5V AND +3.3V 25A		
	300W (MAX).		
	EMACS (Model: P1S2-2300V-R)* 2		
	AC INPUT: 100~240V 47-63Hz 4.5-2A		
	DC OUTPUT: 300W (MAX)		
	+5V 0-20A		
	+12V 24A		
	+3.3V0-20A		
	-12V 0-0.5A		
	+5VSB 0-2.5A		
	+5V AND +3.3V TOTAL Max: 140W		
CPU:	Intel Core 2 Duo E7400 2.8GHz		
	FSB: 1066		
DIMM Memory:	Transcend		
	(Model: 517488-5207) 2GB DDR2-667MHz		
ATA Disk Chip:	ADC II		
Power Switch Button:	one		
USB 2.0 Port:	four (4-pins)		
Serial Port:	one (9-pins)		
D-SUB Port:	one (15-pins)		
RJ45 Connector:	two (8-pins) (10/100/1000Mbps)		
Hard Disk1:	Seagate (Model:ST3500320AS) 500GB (Option)		
Hard Disk2:	Seagate (Model:ST3500320AS) 500GB		
	(Option)		
Hard Disk3:	Seagate (Model:ST3500320AS) 500GB (Option)		
Hard Disk4:	Seagate (Model:ST3500320AS) 500GB (Option)		
Hard Disk5:	Seagate (Model:ST3500320AS) 500GB (Option)		
Hard Disk6:	Seagate (Model:ST3500320AS) 500GB		

International Standards Laboratory

	(Option)
Hard Disk7:	Seagate (Model:ST3500320AS) 500GB
	(Option)
Hard Disk8:	Seagate (Model:ST3500320AS) 500GB
	(Option)

All types of EUT Connect have been tested. The worst data listed in this test report.

Test Configura Test Mode:	ation:			
Mod	Hard Disk	LAN1	LAN2	Power Supply
1	Seagate (Model:ST3500320AS) 500GB *8	1000Mbps	1000Mbps	ETASIS (Model:EFRP-M300)* 2
2	Seagate (Model:ST3500320AS) 500GB *8	1000Mbps	1000Mbps	ETASIS (Model:EFRP-M300)*1
3	Seagate (Model:ST3500320AS) 500GB *8	1000Mbps	1000Mbps	EMACS (Model: P1S2-2300V-R)*2
4	Seagate (Model:ST3500320AS) 500GB *8	1000Mbps	1000Mbps	EMACS (Model: P1S2-2300V-R)*1

EMI Noise Source

Crystal:14.318MHz (X1), 25MHz (X2), 25MHz (X3) Clock Generator: ICS 954128AFLF (U11), 25MHz (Y1),4MHz(Y1)

EMI Solution:

N/A

3. Description of Support Equipment

Unit	Model	Brand	Power Cord	FCC ID
	Serial No.			
Notebook Personal	Latitude D400	DELL	Non-shielded,	FCC DOC
Computer	S/N: N/A		Detachable	
17" LCD Monitor	VA703B	View Sonic	Non-shielded, Detachable	FCC DOC
Rack mountable Switch	DGS-1008D	D-Link	Non-shielded, Detachable	FCC DOC
External HDD	OT-201	A-TEC	N/A	FCC DOC
Enclosure*4	S/N: NA			

3.1 Description of Support Equipment

3.2 Software for Controlling Support Unit Test programs exercising various part of EUT were used. The programs were executed as follows:

A. Read and write to the disk drives.

- B. R/W External Hard Disk from USB Port.
- C. Send signal from EUT to server through LAN port. D. Repeat the above steps.

	Filename	Issued Date
LAN	Tfgen.exe	06/23/1999
Hard Disk	InterEMC.exe	5/21/1996
External Hard Disk	InterEMC.exe	5/21/1996

-7. Declaration of Conformity

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to EUT SPS	1.8M	Non-shielded, Detachable	Plastic Head
LAN Data Cable	Server to Switch RJ 45 Connector	33 feet	Non-shielded, Detachable	RJ-45, with Plastic Head
LCD Monitor Data Cable	LCD Monitor D-Sub Port to EUT D-Sub Port	1.88M	Non-shielded, Detachable	Metal Head Plastic Head
LAN Data Cable*2	EUT RJ 45 Connector to Switch RJ 45 Connector.	2.0M	Non-shielded, Detachable	RJ-45, with Plastic Head
USB Data Cable*4	External HDD Enclosure USB Port to EUT USB Port	0.98M	Non-shielded, Detachable (With Core)	Metal Head
Serial Data Cable	EUT Serial Port to PC Serial Port	5.0M	Shielded, Detachable	Metal Head

3.3 I/O Cable Condition of EUT and Support Units

4. Powerline Conducted Emissions

4.1 Configuration and Procedure

4.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall was 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit of standards used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms impedance termination was connected to the test instrument. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration or modifications made to EUT during testing, are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

4.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on both hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6d below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6d below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

4.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: Detector Function: Resolution Bandwidth: 150KHz~30MHz Quasi-Peak / Average Mode 9KHz

4.2 Conduction Test Data: Configuration 1

Test LAB:International Brandards Laboratory (Hsichih Biter Tel:896-2-26462580 Fax:886-2-26464641 网络利戈姆的有限公司 **Conducted Emission Measurement** operator: 21 °C Temperature: Data :^3 File:68-04-10 Date: 2008;04/10 Time: PM 02:28:44 Humidithe 60.5 80.0 dBuV/m AYG: ą 40 \$ а п 0.150 **U.**5 (HHz) 30,000 Bite: Conduction 91 Phase: £1 Limit: CI6PR22 Class 8 Conduction Power Witness: Company: EUT Model: Execute Program: Note: LISN AVG AVG Cable OP QP QP AVG Frequency Loss Limit Loss Correct Margin Correct Limit Margin Note MHz dB dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB 0.1884 0.18 0.08 50.40 64.1 -13.7 45.30 54.1 -8.80 -16.9 0.2839 0.18 0.09 42.10 60.7 -18.6 33.80 50.7 -17.8 -14.0 0.3784 0.19 0.1 40.50 58.3 34.30 48.3 0.4694 0.19 0.12 39.00 56.5 -17.5 34.70 46.5 -11.8 0.5450 0.19 0.12 32.50 56.0 -23.5 27.40 46.0 -18.6 -23.2 0.6462 0.2 0.13 32.80 56.0 26.70 46.0 -19.3 0.7362 0.2 0.13 30.20 56.0 -25.8 26.50 46.0 -19.5 0.8375 0.2 0.15 30.90 56.0 -25.1 26.40 46.0 -19.6 6.7500 0.33 0.49 35.80 60.0 -24.2 35.50 50.0 -14.5 -17.0 14.6875 0.58 0.72 39.20 60.0 -20.8 33.00 50.0 *:Maximum data x:Over limit

Table 4.2.1 Power Line Conducted Emissions (Hot)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

-10- Declaration of Conformity

Table 4.2.2 Power Line Conducted Emissions (Neutral)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

4.3 Conduction Test Data: Configuration 2

Test LAB:International Brandards Laboratory (Hsichih Biter Tel:896-2-26462580 Fax:886-2-26464641 网络利戈姆的有限公司 **Conducted Emission Measurement** operator: 21 °C Temperature: Data :^7 File:68-04-10 Date: 2008;04/10 Time: PM 02:45:58 Humidithe 60.5 80.0 dBuV/m AYG: de "Milling wife а п 0.150 **U.**5 (HHz) 30,000 Bite: Conduction 91 Phase: £1 Limit: CI6PR22 Class 8 Conduction Power Witness: Company: EUT Model: Execute Program: Note: LISN AVG AVG Cable OP QP QP AVG Frequency Loss Limit Loss Correct Margin Correct Limit Margin Note MHz dB dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB 0.1500 0.18 0.07 29.10 65.9 -36.8 19.90 55.9 -36.0 0.1867 0.18 0.07 53.50 64.1 -10.6 49.80 54.1 -4.38 0.2357 -29.6 -31.6 0.18 0.08 32.60 62.2 20.60 52.2 0.2795 0.18 0.09 45.20 60.8 -15.6 39.90 50.8 -10.9 0.3758 0.19 0.1 42.70 58.3 -15.6 39.40 48.3 -8.97 -22.1 29.50 -16.9 0.4755 0.19 0.12 34.30 56.4 46.4 0.5450 0.19 0.12 34.70 56.0 -21.3 31.30 46.0 -14.7 0.6462 0.2 0.13 33.80 56.0 -22.2 29.50 46.0 -16.5 6.8125 0.33 0.49 41.90 60.0 -18.1 36.20 50.0 -13.8 0.73 15.0000 0.59 45.10 60.0 -14.9 37.70 50.0 -12.3 *:Maximum data x:Over limit

 Table 4.3.1 Power Line Conducted Emissions (Hot)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

-12. Declaration of Conformity

Table 4.3.2 Power Line Conducted Emissions (Neutral)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

4.4 Conduction Test Data: Configuration 3

Test LAB:International Brandards Laboratory (Hsichih Biter Tel:896-2-26462580 Fax:886-2-26464641 网络利戈姆的有限公司 **Conducted Emission Measurement** operator: 22 °C Temperature: Data :^0 File:68-04-14 Date: 2008;04/14 Tline: AM 09:85:10 Humidithe 60.5 80.0 dBuV/m AYG: A A South warrant а п 0.150 **U.**5 (HHz) 30,000 Bite: Conduction 91 Phase: £1 Limit: CI6PR22 Class 8 Conduction Power Witness: Company: EUT Model: Execute Program: Note: LISN AVG AVG Cable OP QP QP AVG Frequency Loss Limit Loss Correct Margin Correct Limit Margin Note MHz dB dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB 0.1894 0.18 0.08 52.90 64.0 -11.1 47.10 54.0 -6.96 0.2559 0.18 0.08 50.30 61.5 -11.2 44.40 51.5 -7.16 0.3057 -11.0 45.50 0.19 0.09 49.00 60.0 50.0 -4.58 0.4143 0.19 0.11 40.10 57.5 -17.4 35.40 47.5 -12.1 0.5000 0.19 0.12 44.40 56.0 -11.6 39.30 46.0 -6.70 0.7<u>025</u> 35.70 46.0 0.2 0.13 40.40 56.0 -15.6 -10.3 0.9050 0.21 0.16 38.20 56.0 -17.8 33.10 46.0 -12.9 1.1075 0.21 0.18 35.70 56.0 -20.3 31.20 46.0 -14.8 1.3099 0.22 0.19 33.20 56.0 -22.8 26.60 46.0 -19.4 1.5125 0.22 0.21 29.70 56.0 -26.3 25.20 46.0 -20.8 *:Maximum data x:Over limit

 Table 4.4.1 Power Line Conducted Emissions (Hot)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

-14. Declaration of Conformity

 Table 4.4.2 Power Line Conducted Emissions (Neutral)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

4.5 Conduction Test Data: Configuration 4

Test LAB:International Brandards Laboratory (Hsichih Biter Tel:896-2-26462580 Fax:886-2-26464641 网络利戈姆的有限公司 **Conducted Emission Measurement** operator: 22 °C Temperature: Data :^7 File:68-04-14 Date: 2008;04/14 Tline: AM 09:45:27 Humidithe 60.5 80.0 dBuV/m AYG: (May I Javil & Apar May а п 0.150 **U.**5 (HHz) 30,000 Bite: Conduction 91 Phase: £1 Limit: CI6PR22 Class 8 Conduction Power Witness: Company: EUT Model: Execute Program: Note: LISN AVG AVG Cable OP QP QP AVG Frequency Loss Limit Loss Correct Margin Correct Limit Margin Note MHz dB dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB 0.1579 0.18 0.07 38.49 65.5 -27.0 31.91 55.5 -23.6 -6.93 0.1901 0.18 0.08 57.20 64.0 -6.83 47.10 54.0 0.2217 0.18 0.08 35.00 62.7 -27.7 26.50 52.7 -26.2 0.2541 0.18 0.08 53.10 61.6 -8.52 46.60 51.6 -5.02 0.2821 0.18 0.09 46.40 60.7 -14.3 44.60 50.7 -6.15 41.90 -7.88 0.3171 0.19 0.09 47.00 59.7 -12.7 49.7 0.3810 0.19 0.1 36.30 58.2 -21.9 31.80 48.2 -16.4 0.4825 0.19 0.12 40.70 56.3 -15.6 37.00 46.3 -9.30 0.6687 0.2 0.13 38.50 56.0 -17.5 33.80 46.0 -12.2 -16.9 0.8600 0.21 0.15 34.40 56.0 -21.6 29.10 46.0 *:Maximum data x:Over limit

Table 4.5.1 Power Line Conducted Emissions (Hot)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

-16- Declaration of Conformity

 Table 4.5.2 Power Line Conducted Emissions (Neutral)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead. The CISPR 22 limits would be applied to all FCC Part 15 devices.

5. Open Field Radiated Emissions

5.1 Configuration and Procedure

5.1.1 EUT Configuration

The equipment under test was set up on a non-conductive table 80cm above ground, on a 10 meter open field or 10 meter chamber. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

5.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The maximum emission was measured by varying the height of antenna and then by rotating the turntable. Both polarization of antenna, horizontal and vertical, were measured.

The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, its polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. The highest emissions of frequency higher than 1000 MHz was analyzed in peak mode and/or average mode to determine the precise amplitude of the emission.

5.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120KHz
Frequency Range:	Above 1000MHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

5.2 Radiation Test Data: Configuration 1 Table 5.2.1 Radiated Emissions (Horizontal)

-18-

Declaration of Conformity

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit Distance: 10 meter,

BILOG Antenna

Frequency: under 1000MHz Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

F	lle :93-04-10		F Da	Radiated Ita 1#6	iEmissio	nMeasur Daf	ement e: 2009/04	0 10 Te	perator: emperat	: Lure: 2	0 °C
	17.0_d0uV/m						.2009/04	H	umidity	56%	
										imit NVC	
											-
											_
	1		ξ.								
			1								
	17										
1	з										
Site Con EUT Mod Note	a in the montain of Chamber idition : FCC : lel Name : le : a ·	22000 000 01 Class B R	2000 0	III 3400	11111 411111	II II II 4161	0.01.000 %20	Polarizat Power: Distance	iion: ; 3m	Horiza	ntsi
Site Con EUT Mod Note	Chamber dition: FCC dition: FCC del Name : del : e :	2700 00 01 Class B R	2000 0	III :14IIII		II II II 46	10.00 %20	Polarizat Power: Distance	ion: : 3m	Horizo	ntsi
Site Con EUT Mod Note Mk.	Chamber dition : FCC : el Name : le : Frequency (MHz)	22100 001 01 Class B R RX_R (dBuV/m)	2000 1 adiation	Cab_L (dB)	PreAmp (dB)	11 11 4iii Correct (dB)	Emission (dBuV/m)	Polarizat Power: Distance	iii IIII ion: : 3m Margin (dB)	Ant.Pos (cm)	Tab.Pd (deg.
Site Con EUT Mod Note Mk.	3 Chamber idition : FCC i ilelName : le : e : Frequency (MHz) 1492.032	27100 001 Class B R (dBuV/m) 33.71	21000 1 adiation (dB) 25.38	Cab_L (dB) 6.28	PreAmp (dB) 18.3	Correct. (dB) 0	Emission (dBuV/m) 47.07	Polarizat Power: Distance	Margin (dB) -26.93	Ant.Pos (cm) 100	Tab.Pr (deg. 234
Site Con EUT Mod Note	3 Chamber dition : FCC : lel Name : le : e : Frequency (MHz) 1492.032 2476.350	27100 001 Class B R (dBuV/m) 33.71 29.14	21000 1 adiation (dB) 25.38 28.45	Cab_L (dB) 6.28 8.36	PreAmp (dB) 18.3 17.71	Correct (dB) 0 0	Emission (dBuV/m) 47.07 48.24	Polarizat Power: Distance Limit (dBuV/m) 74.00 74.00	Margin (dB) -26.93	Ant.Pos (cm) 100	Tab.P (deg 234
1: Site Corr EUT Mod Note	3 1 1000 100011 600 000 1 1000 1 600 000 1 1000 0000 1 1000 000 1 1000 0000 1 1000 000 1 1000 000 1 1000 0000 1 10000000000	22100 100 01 Class B R (dBuV/m) 33.71 29.14	21000 1 adiation (dB) 25.38 28.45	Cab_L (dB) 6.28 8.36	PreAmp (dB) 18.3 17.71	Correct (dB) 0 0	Emission (dBuV/m) 47.07 48.24	Polarizat Power: Distance	Margin (dB) -26.93 -25.76	Ant.Pos (cm) 100	Tab.P. (deg. 234

* Note:

Margin = Corrected Amplitude – Limit

 $Corrected \ Amplitude = \hat{R}adiated \ Amplitude + Antenna \ Correction \ Factor + Cable \ Loss - Pre-Amplifier \ Gain$

A margin of -8dB means that the emission is 8dB below the limit

Distance: 10 meter, Frequency: under 1000MHz BILOG Antenna

Horn AntennaDistance: 3 meter,Frequency: 1000MHz—18GHzThe CISPR 22 limits would be applied to all FCC Part 15 devices.

-20-**Declaration of Conformity**

Test LAB: International Standards Laboratory [Hsichih Site] Tel:885-2-26452550 Fax:886-2-26464641 SERVED FOR A BACKET Operator: RadiatedEmissionMeasurement Temperature: 21 °C File:98-04-10 Data :#2 Date: 2009/04/10 Humidity: 54 % 77.0 dB(202m) Time: AM10:03:57 Land Hagin 37 ΰI 3 1 \$; ÷J IODO.DO MHZ 418.00 515.00 612.00 705.00 127.00 321,00 805.00 30.000 224.00 Site : OATS D1 Condition : EN55022 ClassB 10M Polarization: Vertical Power: Company: EUT Model: Witness: 10m Execute Program : Note : Frequency (MHz) RX_R Ant F Cab L PreAmp Emission Limit Margin (dB) Ant.Pos Tab.Pos Detector No (dB) (dB) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (cm) (deg.) 1 56.0720 17.12 7.6 1.26 0 25.98 30.00 -4.02 100 260 QP 2 82.0872 17.98 7.4 1.5 0 26.88 30.00 -3.12 151 145 QP 3 99.8400 15.33 9.66 1.63 0 26.62 30.00 -3.38 235 233 QP 4 199.7563 12.23 12.76 2.28 0 27.27 30.00 -2.73 200 278 QP 5 299.6610 16.13 13.19 2.88 0 32.20 37.00 -4.80 320 183 QP 6 499.4855 3.82 31.77 37.00 245 QP 10.26 17.69 0 -5.23 177 7 544.3013 10.04 18.14 4.01 0 32.19 37.00 -4.81 289 300 QP 8 599.7421 10.14 18.7 4.24 0 33.08 37.00 -3.92 104 320 QP 9 662.1215 7.99 20 4.48 0 32.47 37.00 -4.53 119 273 QP 10 960.0400 3.98 23.3 5.56 0 32.84 37.00 -4.16 100 266 QP

Table 5.2.1 Radiated Emissions (Vertical)

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

-21. Declaration of Conformity

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

5.3 Radiation Test Data: Configuration 2 Table 5.3.1 Radiated Emissions (Horizontal)

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna

Distance: 10 meter, Frequency: under 1000MHz Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

97.0 d0.001/m Humidity: 56% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	ilə:93-04-10		F Da	Racilated da :#8	IEmissio	nMeasur Daf	rement te: 2009/04	0 10	perator: emperat	: Lure: 2	010
Image Image <th< th=""><th>0</th><th>17.0 d0uV/m</th><th></th><th></th><th></th><th></th><th></th><th></th><th>HI</th><th>umidity:</th><th>56%</th><th></th></th<>	0	17.0 d0uV/m							HI	umidity:	56%	
Image: Second											imit WG.	=
Image: Second												-
Image: Second											_	
Image: Instance Image: Ins												
Image: State in the s		k		β.								
Image: State of the second state of the sec												
13 14 14<		16										
13 13 100 000 000 2200 00 2000 00 3400 00 400 00 400 00 5200 00 5000 00 2000 00 2000 00 2000 00 5200 00 5000 00 2000 00 2000 00 5000 00 5000 00 5000 00 5000 00 5000 00												
T3 T3 <tht3< th=""> T3 T3 T3<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tht3<>												
13 1000 0001 600 00 2000 00 2000 00 2000 00 4000 00 4000 00 5200 00 5000 00 2000 00 2000 00 4000 00 4000 00 5200 00 5000 00 2000 00 2000 00 2000 00 4000 00 4000 00 5200 00 5000 00 2000 00 2000 00 2000 00 2000 00 2000 00 4000 00 4000 00 5200 00 5000 00 2000 00												
13 2000 0001 600 00 2000 00 3400 00 4600 00 5200 00 5000 00 2000 00 2000 00 2000 00 2000 00 2000 00 2000 00 5000 00 5000 00 2000 00												
13 1000 000 160 000 2000 00 2000 00 3400 00 4000 00 5200 00 5000 00 5000 00 7000 00 8 Site : Chamber01 Condition : FCC Class B Radiation Polarization: Horizontal EUT : Power: Model Name : Distance: 3m Mode : Note : Note : Note : Mk Frequency (dBu/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB												
Site : Chamber01 Polarization: Horizontal Condition : FCC Class B Radiation Polarization: Horizontal EUT : Power: Model Name : Distance: 3m Mode : Note : Mk. Frequency (dBuV/m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB												
Mk. Frequency (MHz) RX_R (dBuV/m) Ant F (dB) Cab_L (dB) PreAmp (dB) Correct (dB) Emission (dBUV/m) Limit (dBUV/m) Margin (dB) Ant.Pos (cm) Tab.f (deg 1492.005 34.53 25.38 6.28 18.3 0 47.89 74.00 -26.11 100 24 * 2476.552 29.80 28.45 8.36 17.71 0 48.90 74.00 -25.10 100 20	1 Site Con EU7 Mod Mod	a Chamber : Chamber difion : FCC : lel Name : le :	22100 000 01 Class B R	2000 0	III (1411)) 1	1111 41111	II II II 4161	10.000 %20	Polarizat Power : Distance	iion: ion: : 3m	Horizo	ntaf
1492.005 34.53 25.38 6.28 18.3 0 47.89 74.00 -26.11 100 24 * 2476.552 29.80 28.45 8.36 17.71 0 48.90 74.00 -25.10 100 20	٦ Site Con EU7 Mod Not	a Chamber dition: FCC r: lel Name: le :	2200 00 01 Class B R	adiation	III :1411 II				Polarizat Power: Distance	iiiiii iori: : 3m	Horiza	ntsi
<u>× 2476.552</u> 29.80 28.45 8.36 17.71 0 48.90 74.00 -25.10 100 20	٦ Site Con EUT Mod Note	3 Chamber dition : FCC r : lel Name : le : e : Frequency (MHz)	22100 001 01 Class B R RX_R (dBuV/m)	2000 0 adiation	Cab_L (dB)	PreAmp (dB)	Correct (dB)	Emission (dBuV/m)	Polarizat Power : Distance	iii IIII iion: : 3m Margin (dB)	Ant.Pos (cm)	Tab.Pe (deg.
	Site Con EU7 Mod Note	3 1 000 00011 600 00 1 Chamber dition : FCC : lel Name : le : e : Frequency (MHz) 1492.005	22101 101 01 Class B R (dBuV/m) 34.53	2000 0 adiation Ant_F (dB) 25.38	Cab_L (dB) 6.28	PreAmp (dB) 18.3	Correct (dB)	Emission (dBuV/m) 47.89	Polarizat Power: Distance	Margin (dB) -26.11	Ant.Pos (cm) 100	Tab.Pe (deg. 246
	Site Con EUT Mod Note	3 Chamber diffion : FCC i clelName : le : e : Frequency (MHz) 1492.005 2476.552	27101 101 01 Class B R (dBuV/m) 34.53 29.80	2000 0 adiation (dB) 25.38 28.45	Cab_L (dB) 6.28 8.36	PreAmp (dB) 18.3 17.71	Correct (dB) 0 0	Emission (dBuV/m) 47.89 48.90	Polarizar Power: Distance Limit (dBuV/m) 74.00	Margin (dB) -26.11	Ant.Pos (cm) 100 100	Tab. (de 24
	Site Con EUT Mod Noto	3 1 1000 10001 1600 00 1 : Chamber Idition : FCC : Idel Name : Idel Name : I	22100 100 01 Class B R (dBuV/m) 34.53 29.80	211111 11 adiation (dB) 25.38 28.45	Cab_L (dB) 6.28 8.36	PreAmp (dB) 18.3 17.71	Correct (dB) 0 0	Emission (dBuV/m) 47.89 48.90	Limit (dBuV/m) 74.00 74.00	Margin (dB) -26.11	Ant Pos (cm) 100 100	Tab.P4 (deg. 246 200

* Note:

Margin = Corrected Amplitude – Limit

 $Corrected \ Amplitude = \hat{R}adiated \ Amplitude + Antenna \ Correction \ Factor + Cable \ Loss - Pre-Amplifier \ Gain$

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Declaration of Conformity -24-

Operator:

Temperature: 21 °C File:98-04-10 Data :#4 Date: 2009/04/10 Humidity: 54 % 77.0 dB(202m) Time: AM11:51:45 Land Hagin 37 ě λ× 8 ÷J 1000.00 NH2 321,00 515.00 612.00 805.00 . 127. ad 418.00 709.00 30.000 224.00 Site : OATS D1 Condition : EN55022 ClassB 10M Polarization: Vertical Power: Company: EUT Model: Witness: 10m Execute Program : Note : Frequency (MHz) RX R Ant F Cab L PreAmp Emission Limit Margin (dB) Ant.Pos Tab.Pos Detector No (dB) (dB) (dBuV/m) (dBuV/m) (dB) (dBuV/m) (cm) (deg.) 1 39.7800 11.23 14.65 1.1 0 26.98 30.00 -3.02 138 260 QP 2 55.2205 18.12 7.64 1.26 0 27.02 30.00 -2.98 100 219 QP 3 94.0250 16.50 8.33 1.58 0 26.41 30.00 -3.59 100 132 QP 4 200.7235 12.63 12.6 2.28 0 27.51 30.00 -2.49 251 159 QP 5 221.0978 12.20 10.53 2.41 0 25.14 30.00 -4.86 169 208 QP 6 240.3817 33.07 37.00 329 QP 19.46 11.1 2.51 0 -3.93 163 7 431.5110 11.66 16.38 3.51 0 31.55 37.00 -5.45 166 255 QP 8 500.4805 11.27 17.7 3.82 0 32.79 37.00 -4.21 100 160 QP 9 720.7905 8.75 20.42 4.7 0 33.87 37.00 -3.13 100 182 QP 10 960.2350 3.53 23.3 5.56 0 32.39 37.00 -4.61 136 237 QP

Table 5.3.1 Radiated Emissions (Vertical)

RadiatedEmissionMeasurement

Tel:885-2-26452550 Fax:886-2-26464641

Test LAB: International Standards Laboratory [Hsichih Site]

* Note:

Margin = Corrected Amplitude - Limit

SERVED FOR A BACKET

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

* Note:

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

5.4 Radiation Test Data: Configuration 3 Table 5.4.1 Radiated Emissions (Horizontal)

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna

Distance: 10 meter, Frequency: under 1000MHz Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

F	ile:98-04-10		F Da	Radiated ita :#14	IEmissio	nMeasure Date	:ment :: 2009/4/1	ہ 1	Operator Fempera	r: (ture: 1	20 °C
I	07.0 d0uV/m							- I	lumidity	r: 56 %	,
										AYG.	_
	łž										
	16										
-											
ا Site Corr EUT Moc Moc	I CATS 01 I CATS 01 Idition : FCC I Idition : FCC I Idition : FCC I I I I I I I I I I I I I	2200 000 Class B R	2000 0	III 3400	1111 411111	1111 4601	100 520	Polariz: Power: Distanc	ation: e: ^{3m}	Horize	III III M
Site Cor EUT Moc Not	II CATS 01 II CATS 01 Idition : FCC II del Name : de : e :	2200 00 Class B R	2000 0	00 (0400) D				Polariz: Power: Distanc	a tion: : : e: ^{3m}	Horize	ontal
Site Con EUT Moc Not	CATS 01 1 diffion : FCC 1 r : del Name : de : e : Frequency (MHz)	22100 000 Class B R RX_R (dBuV/m)	2000 1 adiation	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Polariz: Power : Distanc (dB)	ation: e: 3m Ant.Pos (cm)	Tab.Pos (deg.)	Detect
Site Con EUT Moc Not	Image: A state of the state	22100 000 Class B R (dBuV/m) 35.51	Ant F (dB) 24.49	Cab_L (dB) 5.24	PreAmp (dB) 18.22	Emission (dBuV/m) 47.02	Limit (dBuV/m) 74.00	Polariz: Power: Distanc (dB) -26.98	Ant. Pos (cm) 100	fill Hosize (deg.) 146	Detect
Site Con EUT Moc Not Mk.	13	22100 00 Class B R (dBuV/m) 35.51 33.10	2000 1 adiation (dB) 24.49 25.8	Cab_L (dB) 5.24 6.54	PreAmp (dB) 18.22 18.24	Emission (dBuV/m) 47.02 47.20	Limit (dBuV/m) 74.00 74.00	Polariza Power : Distanc (dB) -26.98 -26.80	Ant.Pos (cm) 100 100	Tab.Pos (deg.) 146 138	Detec pea
Site Con EUT Moc Not	Image: state	27100 000 Class B R (dBuV/m) 35.51 33.10	2000 1 adiation (dB) 24.49 25.8	Cab_L (dB) 5.24 6.54	PreAmp (dB) 18.22 18.24	Emission (dBuV/m) 47.02 47.20	Limit (dBuV/m) 74.00 74.00	Polariz: Power: Distanc (dB) -26.98 -26.80	Ant.Pos (cm) 100 100	/III Horize (deg.) 146 138	Detect peal

* Note:

Margin = Corrected Amplitude – Limit

 $Corrected \ Amplitude = \hat{R}adiated \ Amplitude + Antenna \ Correction \ Factor + Cable \ Loss - Pre-Amplifier \ Gain$

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

-28. Declaration of Conformity

Table 5.4.1 Radiated Emissions (Vertical)

	19 :98-04-1 0 (1		Da	uta :#2		Date: 2 Time: F	009/04/10 M02:03:4	42	Tempera Humidity	nbure: 3 7:54%	21 10
										Lani. Hagin,	_
3	2 1 X X 0	*	500		U		Í	U X		<u>a in</u>	
∙o Site Com Com	30.000 127.00 : OATS 01 diftion : EN55 spany:	224.00 022 Class	321.00 sB 10M	418.0	0 515.	00 612.(00 705.1	Polariz Power	ation:	lat Vertic	ю.Do ин af
∙y Site Com EUT Exec Note	30.000 127.00 : OATS D1 dition : EN55 spany: Model: cute Program: :	224.00	321.00 sB 10M	418.0	0 515.	00 612.	<u>10</u> 705.	Polariz Power Witnes	ation: : : s: ¹⁰ m	loc Vertic	ю.со ин 81
J Silte Com EUT Exec Note	30.000 127.00 : OATS 01 diffion : EN55 pany: Model: cute Program : Prequency (MHz)	224.00 222 Class 022 Class (dBuV/m)	321.00 B 1 0M	418.[Cab_L (dB)	0 515. PreAmp (dB)	00 612.1 Emission (dBuV/m)	10 705.1	DD BI Polariz Power Witnes	ation: : s: 10m	Tab.Pos (deg.)	Detecto
J Silte Com EUT Exec Note	30.000 127.00 : OATS D1 diftion : EN55 upany: Model: cute Program : : : Frequency (MHz) 61.1400	224.00 222 Class 022 Class (dBuV/m) 14.28	321.00 38 10M	418.[cab_L (dB) 0.78	0 515. PreAmp (dB) 0	00 612.0 Emission (dBuV/m) 23.03	Limit (dBuV/m) 30.00	DD BI Polariz Power Witnes Margin (dB) -6.97	Ant.Pos (cm) 296	Tab.Pos (deg.) 182	Detecto
J Silte Com EUT Exec Note No.	30.000 127.00 : OATS 01 dition : EN55 pany: Model: cute Program : : Frequency (MHz) 61.1400 74.3620	224.00 6022 Class (dBuV/m) 14.28 17.09	321.00 321.00	418.1 (dB) 0.78 0.86	PreAmp (dB) 0	00 612.0 Emission (dBuV/m) 23.03 26.01	Limit (dBuV/m) 30.00 30.00	DO BI Polariz Power Witnes (dB) -6.97 -3.99	D5.DD ation: : s: 10m Ant.Pos (cm) 296 328	Tab.Pos (deg.) 182 211	Detecto QP QP
J Site Com EUT Exec Note	30.000 127.00 : OATS 01 dition : EN59 pany: Model: cute Program : : : Frequency (MHz) 61.1400 74.3620 93.1410	RX_R (dBuV/m) 14.28 17.09 17.15	321.00 321.00	418.1 (dB) 0.78 0.86 0.97	PreAmp (dB) 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64	Limit (dBuV/m) 30.00 30.00 30.00	Margin (dB) -6.97 -3.36	Ant.Pos (cm) 296 328 244	Tab.Pos (deg.) 182 211 154	Detecto QP QP
J Silte Com EUT Exec Note	30.000 127.00 : OATS 01 difion : EN55 pany: Model: cute Program: : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280	RX_R (dBuV/m) 14.28 17.09 17.15 12.26	321.00 321.00	418.1 (dB) 0.78 0.86 0.97 1.48	PreAmp (dB) 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72	Limit (dBuV/m) 30.00 30.00 30.00	D B Polariz Power Witnes -6.97 -3.99 -3.36 -3.28	Ant.Pos (cm) 296 328 244 362	Tab.Pos (deg.) 182 211 154 195	Detector QP QP QP
J Silte Com EUT Exec Note Note	30.000 127.00 : CATS 01 diffion : EN55 pany: Model: cute Program : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280 293.7150 400.4200	RX_R (dBuV/m) 14.28 17.09 17.15 12.26 16.42 10.61	321.00 321.00	Cab_L (dB) 0.78 0.86 0.97 1.48 1.9 2.59	PreAmp (dB) 0 0 0 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72 31.82 31.29	Limit (dBuV/m) 30.00 30.00 30.00 37.00 37.00	Margin (dB) -6.97 -3.99 -3.36 -5.18 -5.18	Ant.Pos (cm) 296 328 244 362 175	Tab.Pos (deg.) 182 211 154 195 147 209	Detector QP QP QP
J Site Con Com EUT Exec Note No. 1 2 3 4 5 6 7	30.000 127.00 : OATS 01 dition : EN55 pany: Model: cute Program : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280 293.7150 499.4200 699.6440	RX_R (dBuV/m) 14.28 17.09 17.15 12.26 16.42 10.61 7.29	321.00 321.00	Cab_L (dB) 0.78 0.86 0.97 1.48 1.9 2.68 3.33	PreAmp (dB) 0 0 0 0 0 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72 31.82 31.28 30.92	Limit (dBuV/m) 30.00 30.00 30.00 37.00 37.00 37.00	Margin (dB) -6.97 -3.99 -3.36 -3.28 -5.18 -5.72 -6.08	Ant.Pos (cm) 296 328 244 362 175 100 159	Tab.Pos (deg.) 182 211 154 195 147 208 166	Detector QP QP QP QP QP QP
J Silte Con Com EUT Exee Note No. 1 2 3 4 5 6 7 8	30.000 127.00 : OATS 01 dition : EN55 pany: Model: cute Program : : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280 293.7150 499.4200 699.6440 750.3975	RX_R (dBuV/m) 14.28 17.09 17.15 12.26 16.42 10.61 7.29 8.38	Ant_F (dB) 7.97 8.06 8.52 12.98 13.5 17.99 20.3 20.61	Cab_L (dB) 0.78 0.86 0.97 1.48 1.9 2.68 3.33 3.47	PreAmp (dB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72 31.82 31.28 30.92 32.46	Limit (dBuV/m) 30.00 30.00 30.00 37.00 37.00 37.00 37.00	Margin (dB) -6.97 -3.36 -3.28 -5.18 -5.72 -6.08 -4.54	Ant.Pos (cm) 296 328 244 362 175 100 159 317	Tab.Pos (deg.) 182 211 154 195 147 208 166 130	Detecto QP QP QP QP QP QP QP QP QP QP
- J Silte Com EUT EXEC Note Note Note Note S 5 6 7 8 9	30.000 127.00 : OATS 01 dition : EN55 pany: Model: cute Program : : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280 293.7150 499.4200 699.6440 750.3975 874.2530	RX_R (dBuV/m) 14.28 17.09 17.15 12.26 16.42 10.61 7.29 8.38 3.76	Ant_F (dB) 7.97 8.06 8.52 12.98 13.5 17.99 20.3 20.61 22.39	Cab_L (dB) 0.78 0.86 0.97 1.48 1.9 2.68 3.33 3.47 3.82	PreAmp (dB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72 31.82 31.28 30.92 32.46 29.97	Limit (dBuV/m) 30.00 30.00 30.00 37.00 37.00 37.00 37.00 37.00	Image Image Polariz Power Witnes Margin (dB) -6.97 -3.99 -3.36 -3.28 -5.18 -5.72 -6.08 -4.54 -7.03 -7.03	Ant.Pos (cm) 296 328 244 362 175 100 159 317 173	Tab.Pos (deg.) 182 211 154 195 147 208 166 130 118	Detector QP QP QP QP QP QP QP QP QP QP QP QP QP
J Site Con Com EUT Exec Note Note	30.000 127.00 : OATS 01 dition : EN55 pany: Model: cute Program : : : Frequency (MHz) 61.1400 74.3620 93.1410 199.2280 293.7150 499.4200 699.6440	RX_R (dBuV/m) 14.28 17.09 17.15 12.26 16.42 10.61 7.29	Ant_F (dB) 7.97 8.06 8.52 12.98 13.5 17.99 20.3	Cab_L (dB) 0.78 0.86 0.97 1.48 1.9 2.68 3.33	PreAmp (dB) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Emission (dBuV/m) 23.03 26.01 26.64 26.72 31.82 31.28 30.92	Limit (dBuV/m) 30.00 30.00 30.00 30.00 37.00 37.00 37.00	D0 B Polariz Power Witnes -6.97 -3.99 -3.36 -3.28 -5.18 -5.72 -6.08	Ant.Pos (cm) 296 328 244 362 175 100 159	Tab.Pos (deg.) 182 211 154 195 147 208 166	0.D0

* Note:

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

Distance: 10 meter, Frequency: under 1000MHz BILOG Antenna

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

FI	lie:98-04-10		F Da	Radiateo ita :#15	1Emissio	nMeasure Date	ement :: 2009/4/1	0 1 1	Operator Fempera Jumidity	r: MEUTRE: ; ≂ AS™	20 °C
0.	7.0 d0uV/m									r. Du _A	,]
										AVG.	_
	<u>k</u> 2										
	~ X										
1	16										
	1										I
1: Site Com EUT Mod Mod	a CATS 01 diffion : FCC 1 : el Name : e :	2700 00 Class B R	2000 0	<u>111 :14111</u> 1	1111 41111	1111 4iill	100 5201	Polariz: Power: Distanc	ation: e: ^{3m}	Vertic	:
1: Site Com EUT Mod Note	a CATS 01 dition : FCC 1 : el Name : e : o :	22100 000 Class B R	2000 0	01 (140) 1				Polariz: Power : Distanc	ation: e: ^{3m}	Vertic	::::::::::::::::::::::::::::::::::::::
Site Com EUT Mod Note Mk.	A CATS 01 diffion : FCC : el Name : e : Frequency (MHz)	22100 00 Class B R RX_R (dBuV/m)	2000 0 adiation	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Polariz: Power: Distanc Margin (dB)	ation: e: 3m Ant.Pos (cm)	Tab.Pos (deg.)	Dete
Site Corn EUT Mod Mod Note	GATS 01 diffion : FCC : el Name : e : Frequency (MHz) 1116.345	22100 00 Class B R (dBuV/m) 40.49	2000 0 adiation	Cab_L (4B) 5.23	PreAmp (dB) 18.22	Emission (dBuV/m) 51.98	Limit (dBuV/m) 74.00	Polariz: Power: Distanc (dB) -22.02	ation: e: 3m Ant.Pos (cm) 100	Tab.Pos (deg.) 134	Dete

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter,

Frequency: under 1000MHz Frequency: 1000MHz—18GHz Horn Antenna Distance: 3 meter,

The CISPR 22 limits would be applied to all FCC Part 15 devices.

Test LAB: international Standards Laboratory (Hsichih Site) Tel:885-2-26452550 Fax:886-2-26464641 6805 Operator: RadiatedEmissionMeasurement Temperature: 21 °C File:98-04-10 Date: 2009/04/10 Data :#3 Humidity: 54 % 77.0 dB(297m) Time: PM02:47:49 Land Hargin 37 Ĩa 5 Ş ł -11 127.00 418.00 806.00 TODO.DO MH2 30.000 224 00 321.00 515.00 612.00 705.0 OATS D1 Site : Condition : EN55022 ClassB 10M Polarization: Horizontal Power: Company: Witness: 10m EUT Model: Execute Program : Note : PreAmp Margin Frequency (MHz) RX_R (dBuV/m) Ant_F Cab_L Emission Limit Ant.Pos Tab.Pos Detector No (dBuV/m) (dB) (dB) (dB) (dBuV/m) (dB) (cm) (deg.) 149.2528 12.68 1.25 25.06 30.00 -4.94 400 132 QP 1 11.13 0 199.3240 9.60 12.99 1.48 24.07 30.00 -5.93 358 194 QP 2 0 3 240.1200 20.88 11.4 1.67 0 33.95 37.00 -3.05 400 138 QP 4 499.6510 13.24 17.99 2.68 0 33.91 37.00 -3.09 142 116 QP 5 545.0146 11.51 18.45 2.83 0 32.79 37.00 -4.21 130 148 QP 37.00 136 193 QP 6 574.7510 9.90 18.6 2.94 0 31.44 -5.56 582.8400 10.89 18.63 32.49 37.00 -4.51 100 158 QP 7 2.97 0 8 720.1470 7.30 20.42 3.39 0 31.11 37.00 -5.89 100 172 QP 9 750.9260 7.16 20.62 3.47 0 31.25 37.00 -5.75 100 119 QP 10 930.8800 5.84 22.89 3.98 0 32.71 37.00 -4.29 100 166 QP

5.5 Radiation Test Data: Configuration 4 Table 5.5.1 Radiated Emissions (Horizontal)

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna

Distance: 10 meter, Frequency: under 1000MHz Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

F	ile:99-04-40		F De	Radiated	IEmissio	nMeasure Date	ment 2009/4/4	n 1	Operator Fempera	r: (ture: : :	20 °C
	07.0 d0uV/m			112 .#1U			. 10030401	1	lumidity	r. 56%	
										Limit AVG.	\equiv
											_
											_
	↓ ××										
	Ĩ										
	17										
٦	13 1 0000 00001 6010 00	22100-000	2000 1	110 :04000	1101 4000		100 9200	1 1001 51			
ר Site Corr EUT Moc Moc	I OATSON I OATSON Indition: FCC F: del Name: de:	2200 00 Class B R	2000 I	III (1411)) 1	1111 411111	IIII 4601	100 520	Polariz: Polariz: Power: Distanc	ation: e: ^{3m}	/III Horize	ui uu mi
Site Cor EU1 Moc Moc Not	A CATS 01 Indition : FCC r : del Name : de : e :	22108 000 Class B R	2000 I	<u>111 3141111</u> 1		0.000 4600	100 5201	Polariz: Power: Distanc	ation: : e: ^{3m}	Horize	n ni m orital
Site Con EUT Moc Not	Contraction Contra	22101 001 Class B R RX_R (dBuV/m)	2000 1 adiation	UII :14 1 (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Polariz: Power: Distanc Margin (dB)	ation: e: 3m	Horize Tab.Pos (deg.)	Detect
Site Con EUT Moc Not	Contraction of the second seco	27101 100 Class B R (dBuV/m) 35.83	2000 1 adiation	Cab_L (dB) 5.24	PreAmp (dB) 18.22	Emission (dBuV/m) 47.34	Limit (dBuV/m) 74.00	Polariz: Power: Distanc (dB) -26.66	Ant.Pos (cm) 100	Tab.Pos (deg.) 149	Detect
Site Con EU1 Moc Not	Image:	27101 101 Class B R (dBuV/m) 35.83 37.51	2000 1 adiation (dB) 24.49 25.4	Cab_L (dB) 5.24 6.3	PreAmp (dB) 18.22 18.3	Emission (dBuV/m) 47.34 50.91	Limit (dBuV/m) 74.00 74.00	Polariza Power : Distanc (dB) -26.66 -23.09	Ant.Pos (cm) 100	Tab.Pos (deg.) 149 173	Detect
Site Con EUT Moc Not	Image: Control of the image: Contro	27101 00 Class B R (dBuV/m) 35.83 37.51	2000 1 adiation (dB) 24.49 25.4	Cab_L (dB) 5.24 6.3	PreAmp (dB) 18.22 18.3	Emission (dBuV/m) 47.34 50.91	Limit (dBuV/m) 74.00 74.00	Margin (dB) -26.66	Ant.Pos (cm) 100	Tab.Pos (deg.) 149 173	Deta

* Note:

Margin = Corrected Amplitude – Limit

 $Corrected \ Amplitude = \hat{R}adiated \ Amplitude + Antenna \ Correction \ Factor + Cable \ Loss - Pre-Amplifier \ Gain$

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

-32-**Declaration of Conformity**

Operator:

RadiatedEmissionMeasurement Temperature: 21 °C File:98-04-10 Data :#4 Date: 2009/04/10 Humidity: 54 % 77.0 dB(202m) Time: PM03:40:13 Land Hagin 37 20 ÷J IODO.DO MHZ 321,00 515.00 612.00 805.00 . 127. ad 418.00 709.00 30,000 224.00 Site OATS D1 Polarization: Vertical Condition : EN55022 ClassB 10M Power: Company: EUT Model: Witness: 10m Execute Program : Note : Frequency (MHz) RX R Ant F Cab L PreAmp Emission Limit Margin (dB) Ant.Pos Tab.Pos Detector No (dB) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 1 39.0680 11.60 14.77 0.64 0 27.01 30.00 -2.99 285 142 QP 2 55.5110 18.29 7.99 0.75 0 27.03 30.00 -2.97 314 185 QP 3 94.2170 17.21 8.77 0.97 0 26.95 30.00 -3.05 145 156 QP 4 199.6920 10.92 13.05 1.48 0 25.45 30.00 -4.55 400 217 QP 5 221.4660 13.84 10.87 1.58 0 26.29 30.00 -3.71 260 173 QP 6 240.2500 30.26 37.00 193 QP 17.19 11.4 1.67 0 -6.74 167 7 431.1980 12.00 16.47 2.44 0 30.91 37.00 -6.09 204 132 QP 8 499.8240 8.73 18 2.68 0 29.41 37.00 -7.59 100 159 QP 9 620.1400 7.12 19.14 3.09 0 29.35 37.00 -7.65 155 170 QP 10 750.4150 8.92 20.61 3.47 0 33.00 37.00 -4.00 100 188 QP

Table 5.5.1 Radiated Emissions (Vertical)

Tel:885-2-26452550 Fax:886-2-26464641

Test LAB: International Standards Laboratory [Hsichih Site]

* Note:

Margin = Corrected Amplitude - Limit

SERVED FOR A BACKET

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

* Note:

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz—18GHz

The CISPR 22 limits would be applied to all FCC Part 15 devices.

6. Appendix

6.1 Appendix A: Warning Labels

Label Requirements

A Class B digital device subject to Declaration of Conformity of FCC shall carry a label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

6.2 Appendix B: Warning Statement

Statement Requirements

The operators' manual for a Class B digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.
- Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operators manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

6.3 Appendix C: Measurement Procedure for Powerline Conducted Emissions

The measurements are performed in a $3.5m \ge 3.4m \ge 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \ge 3m \ge 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m $\ge 1.5m$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

6.4 Appendix D: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

6.5 Appendix E: Test Equipment

6.5.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
					Date	Date
Conduction	Coaxial Cable 1F-C1	Harbourindus tries	RG400	1F-C1	10/23/2008	10/23/2009
Conduction	Hygro-Thermo Meter 11	N/A	TH-400	ISL-002	02/23/2009	02/23/2010
Conduction	LISN 02	EMCO	3825/2	1407	07/07/2008	07/07/2009
Conduction	LISN 03	R&S	ESH3-Z5 831.5518.52	828874/010	07/07/2008	07/07/2009
Conduction	ISN T2 03	FCC	FCC-TLISN- T2-02	20618	08/05/2008	08/05/2009
Conduction	ISN T4 05	FCC	FCC-TLISN- T4-02	20619	08/06/2008	08/06/2009
Conduction	ISN T8 03	FCC	FCC-TLINS- T8-02	20620	08/05/2008	08/05/2009
Conduction	EMI Receiver 08	Schwarzbeck Mess-Elektro nik	FCKL 1528	1528-202	09/05/2008	09/05/2009
Conduction	Spectrum Analyzer 05	HP	8594EM	3619A00192	02/23/2009	02/23/2010
Radiation	BILOG Antenna 10	Sumol Sciences	JB1	A013004-1	07/24/2008	07/24/2009
Radiation	Coaxial Cable 3F-10M	MIYAZAKI	8D-8F	10M-1	10/23/2008	10/23/2009
Radiation	Coaxial Cable 3F-3M	BELDEN	RG-8/U	3F-3M	10/23/2008	10/23/2009
Radiation	Spectrum Analyzer 12	Advantest	R3132	130200208	03/05/2009	03/05/2010
Radiation	Hygro-Thermo Meter 10	N/A	TH-400	ISL-001	02/23/2009	02/23/2010
Rad. above 1Ghz	Horn Antenna 01	EMCO	3115	9504-4462	11/04/2008	11/04/2009
Rad. above 1Ghz	Horn Antenna 03	COM-Power	AH-826	100A	02/27/2009	02/27/2010
Rad. above 1Ghz	Microwave Cable RF07-3	HUBER+SU HNER AG.	Sucoflex 103	42728/3	07/17/2008	07/17/2009
Rad. above 1Ghz	Preamplifier 01	R&S	ESMI-Z7	1045.502	07/17/2008	07/17/2009
Radiation	Signal Generator 01	HP	8656B	2635A04675	08/21/2008	08/21/2009
Radiation	EMI Receiver 09	Schwarzbeck Mess-Elektro nik	FCVU 1534	1534-150	05/08/2008	05/08/2009

6.5.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date
Hsichih Conduction	EZ EMC	1.1.4.2	2/10/2007

-39. Declaration of Conformity

Hsichih Radiation	EZ EMC	1.1.4.2	1/24/2007

6.6 Appendix F: Layout of EUT and Support Equipment

6.6.1 General Conducted Test Configuration

6.6.2 General Radiation Test Configuration

Metal Full Soldered Ground Plane

Note: BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

6.7 Appendix G: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 01>: ±2.946dB

<OATS 01 (3M)> 1GHz~18GHz: ±3.343dB 18GHz~26GHz: ±3.583dB

<OATS 01 (10M)> 30MHz~1GHz: ±2.547dB

6.8 Appendix H: Photographs of EUT Configuration Test Set Up

The measurement results along with the appropriate limits for comparison shall be presented in tabular form. If an alternate test method is used, the test report must identify that method and justification for its use shall be provided. Instrumentation, instrument attenuator and bandwidth settings, detector function, EUT arrangements, a sample calculation with all conversion factors and all other pertinent details shall be included along with the measurement results. When automatic scan techniques are used, an explanation of how each emission from the EUT was maximized shall be included in the test report along with the scan rate used to obtain each level.

The justification for selecting a particular EUT configuration and particular length of interface cable to produce maximized emissions must be documented in the test report. Photographs clearly showing the test set-up and interface cable arrangement for the highest radiated and line conducted emission measured shall be included.

The Front View of Highest Conducted Set-up For EUT

The Back View of Highest Conducted Set-up For EUT

The Front View of Highest Conducted Set-up For EUT

The Back View of Highest Conducted Set-up For EUT

The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

The Front View of Highest Radiated Set-up For EUT

The Back View of Highest Radiated Set-up For EUT

6.9 Appendix I: Photographs of EUT

Please refer to the File of ISL-09HE104P

7. Attachment:

Model Number(s):

TS-809U; TS-809U-RP; TS-809U-SP; TS-809U-G; TS-809U-RP-G; TS-809U-SP-G; VioStor-8040U-SP; VioStor-8036U-SP; VioStor-8032U-SP; VioStor-8024U-SP; VioStor-8040U-RP; VioStor-8036U-RP; VioStor-8032U-RP; VioStor-8024U-RP; NVR-8040U-SP; NVR-8036U-SP; NVR-8032U-SP; NVR-8024U-SP; NVR-8040U-RP; NVR-8036U-RP; NVR-8032U-RP; NVR-8024U-RP; NV-8040U-SP; NV-8036U-SP; NV-8032U-SP; NV-8024U-SP; NV-8040U-RP; NV-8040U-SP; NV-8036U-SP; NV-8032U-SP; NV-8024U-SP; NV-8040U-RP; NV-8040U-SP; NV-8036U-SP; NV-8032U-SP; NV-8024U-SP; NV-8040U-RP;