

Issue Date: 2/25/2011 Ref. Report No. ISL-11HE048CE

Product Name : Network Attached Storage

: TS-412U; TS-412U II; TS-412U Pro II; TS-412U Pro-G; TS-412U-G;

TS-412U Pro II-G; TS-412U II-G; TS-412U Pro-M; TS-412U M;

NAS-412U Pro-G; NAS-412U Pro II-G; NAS-412U II-G; NAS-412U-G;

NAS-412UG

Brand : QNAP

Responsible Party : QNAP Systems, Inc.

Address : 21F, No. 77, Sec. 1, ,Xintai 5th Rd.

Xizhi District, New Taipei City 221, Taiwan,

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive- EMC Directive 2004/108/EC. The device was passed the test performed according to:

Standards:

Model(s)

EN 55022:2006 +A1:2007 / CISPR 22:2005 +A1:2005 / AS/NZS CISPR 22: 2009

EN 61000-3-2: 2006 and IEC 61000-3-2: 2005 EN 61000-3-3: 2008 and IEC 61000-3-3: 2008

EN55024:1998+A1:2001+A2:2003 / CISPR 24:1997+A1:2001+A2:2002

EN 61000-4-2: 1995+A1: 1998+A2: 2001 and IEC 61000-4-2: 1995+A1: 1998+A2: 2000

EN 61000-4-3: 2006 + A1:2008and IEC 61000-4-3: 2006 + A1:2007

EN 61000-4-4: 2004 and IEC 61000-4-4: 2004 EN 61000-4-5: 2006 and IEC 61000-4-5: 2005

EN 61000-4-6: 2007 and IEC 61000-4-6: 2003+A1:2004+A2: 2006

EN 61000-4-8: 1993+A1: 2001 and IEC 61000-4-8: 1993+A1: 2000

EN 61000-4-11: 2004 and IEC 61000-4-11: 2004

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

International Standards Laboratory

Hsi-Chih LAB:

No. 65, Gu Dai Keng St., Hsichih District, New Taipei City 22117, Taiwan Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Lung-Tan LAB:

No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan Tel: 886-3-407-1718; Fax: 886-3407-1738

Jim Chu / Director

CE MARK TECHNICAL FILE

AS/NZS EMC CONSTRUCTION FILE

of

Product Name

Network Attached Storage

Model

TS-412U; TS-412U II; TS-412U Pro II; TS-412U Pro-G; TS-412U-G; TS-412U Pro II-G; TS-412U II-G; TS-412U Pro-M; TS-412U M; NAS-412U Pro-G; NAS-412U Pro II-G; NAS-412U II-G; NAS-412U-G; NAS-412UG

Brand

QNAP

Contains:

- 1. Declaration of Conformity
- 2. EN55022/CISPR 22, AS/NZS CISPR 22 EMI test report
- 3. EN55024/CISPR 24, EN61000-3-2 / IEC 61000-3-2, and EN61000-3-3 / IEC 61000-3-3 test report
- 4. Certificate of EN60950-1
- 5. Block Diagram and Schematics
- 6. Users' manual

Declaration of Conformity

Name of Responsible Party: QNAP Systems, Inc.

Address of Responsible Party: 21F, No. 77, Sec. 1, ,Xintai 5th Rd.

Xizhi District, New Taipei City 221, Taiwan,

Declares that product: Network Attached Storage

Model: TS-412U; TS-412U II; TS-412U Pro II; TS-412U

Pro-G; TŚ-412U-G; TŚ-412U Pro II-G; TŚ-412U II-G; TŚ-412U Pro-M; TŚ-412U M; NAŚ-412U Pro-G; NAŚ-412U Pro II-G; NAŚ-412U II-G;

NAS-412U-G; NAS-412UG

Brand: QNAP

Assembled by: Same as above Address: Same as above

Conforms to the EMC Directive 2004/108/EC as attested by conformity with the following harmonized standards:

EN 55022:2006 +A1:2007 / CISPR 22:2005 +A1:2005 / AS/NZS CISPR 22: 2009: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN55024:1998+A1:2001+A2:2003 / CISPR 24:1997+A1:2001+A2:2002: Information technology equipment-Immunity characteristics-Limits and methods of measurement.

Standard	Standard Description		Criteria
EN 61000-4-2: 1995+A1: 1998+A2: 2001 IEC 61000-4-2: 1995+A1: 1998+A2: 2000	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 IEC 61000-4-3:2006+A1:2007	Radio-Frequency, Electromagnetic Field	Pass	A
EN 61000-4-4: 2004 IEC 61000-4-4: 2004	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5: 2006 IEC 61000-4-5: 2005	Surge	Pass	В
EN 61000-4-6: 2007 IEC 61000-4-6: 2003+A1:2004+A2: 2006	Conductive Disturbance	Pass	A
EN 61000-4-8: 1993+A1: 2001 IEC 61000-4-8: 1993+A1: 2000	Power Frequency Magnetic Field	Pass	A
EN 61000-4-11: 2004 IEC 61000-4-11: 2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

<to be continued>

Standard	Description	Results
EN 61000-3-2: 2006 IEC 61000-3-2: 2005	Limits for harmonics current emissions	Pass
EN 61000-3-3: 2008 IEC 61000-3-3: 2008	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

Conforms to the Low Voltage Directive 2006/95/EC, 93/68/EEC as attested by conformity with the following harmonized standard:

EN60950-1:2006+A11:2009: Safety of Information Technology Equipment Including electrical business equipment

We, QNAP Systems, Inc., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

QNAP Systems, Inc.

Date: 2/25/2011

Declaration of Conformity

Name of Responsible Party: QNAP Systems, Inc.

Address of Responsible Party: 21F, No. 77, Sec. 1, ,Xintai 5th Rd.

Xizhi District, New Taipei City 221, Taiwan,

Declares that product: Network Attached Storage

Model: TS-412U; TS-412U II; TS-412U Pro II; TS-412U Pro-G;

TS-412U-G; TS-412U Pro II-G; TS-412U II-G; TS-412U Pro-M; TS-412U M; NAS-412U Pro-G; NAS-412U Pro II-G; NAS-412U II-G; NAS-412U-G;

NAS-412UG

Brand: QNAP

Assembled by: Same as above Address: Same as above

Conforms to the C-Tick Mark requirement as attested by conformity with the following standards:

EN 55022:2006 +A1:2007 / CISPR 22:2005 +A1:2005 / AS/NZS CISPR 22: 2009: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN55024:1998+A1:2001+A2:2003 / CISPR 24:1997+A1:2001+A2:2002: Information technology equipment-Immunity characteristics-Limits and methods of measurement.

Standard	Description	Results	Criteria
EN 61000-4-2: 1995+A1: 1998+A2: 2001 IEC 61000-4-2: 1995+A1: 1998+A2: 2000	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 IEC 61000-4-3:2006+A1:2007	Radio-Frequency, Electromagnetic Field	Pass	A
EN 61000-4-4: 2004 IEC 61000-4-4: 2004	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5: 2006 IEC 61000-4-5: 2005	Surge	Pass	В
EN 61000-4-6: 2007 IEC 61000-4-6: 2003+A1:2004+A2: 2006	Conductive Disturbance	Pass	A
EN 61000-4-8: 1993+A1: 2001 IEC 61000-4-8: 1993+A1: 2000	Power Frequency Magnetic Field	Pass	A
EN 61000-4-11: 2004 IEC 61000-4-11: 2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

<to be continued>

Page 2 of 2 Report No. ISL-11HE048CE

Standard	Description	Results
EN 61000-3-2: 2006 IEC 61000-3-2: 2005	Limits for harmonics current emissions	Pass
EN 61000-3-3: 2008 IEC 61000-3-3: 2008	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

We, QNAP Systems, Inc., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

QNAP Systems, Inc.

Date: 2/25/2011

CE TEST REPORT

of

EN55022 / CISPR 22 / AS/NZS CISPR 22 Class B EN55024 / CISPR 24 / IMMUNITY EN61000-3-2 / EN61000-3-3

Product: Network Attached Storage

Model(s): **TS-412U**; **TS-412U II**; **TS-412U Pro II**;

TS-412U Pro-G; TS-412U-G; TS-412U Pro

II-G; TS-412U II-G; TS-412U Pro-M;

TS-412U M; NAS-412U Pro-G; NAS-412U Pro II-G; NAS-412U II-G; NAS-412U-G;

NAS-412UG

Brand: **QNAP**

Applicant: QNAP Systems, Inc.

Address: 21F, No. 77, Sec. 1, Xintai 5th Rd.

Xizhi District, New Taipei City 221, Taiwan,

Test Performed by:

International Standards Laboratory

<Hsi-Chih LAB>

*Site Registration No.

BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178;

IC: IC4067A-1; VCCI: R-341,C-354, T-1749; NEMKO: ELA 113A

*Address:

No. 65, Gu Dai Keng St.

Hsichih District, New Taipei City 22117, Taiwan *Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: ISL-11HE048CE

Issue Date: 2/25/2011

This report totally contains 48 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NEMKO or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

ISL International Standards Laboratory

Contents of Report

1.	General	1
1.1	Certification of Accuracy of Test Data	1
1.2	Test Standards	2
1.3		
1.4	Description of Support Equipment	4
1.5		
1.6		
2.	Power Main Port Conducted Emissions	
2.1	Test Setup and Procedure	6
2	2.1.1 Test Setup	6
_	2.1.2 Test Procedure	
	2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
	Conduction Test Data: Configuration 1	
3.	Telecommunication Port Conducted Emissions	
3.1	1	
	3.1.1 Test Setup	
-	8.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)	
3.2		
3.3	6	
3.4	ϵ	
3.5		
3.6		
3.7	•	
4.	Radiated Disturbance Emissions	
4.1		
4	1.1.1 Test Setup	
	1.1.2 Test Procedure	
	5.1.3 Spectrum Analyzer Configuration (for the frequencies tested)	
4.2		
5.	Electrostatic discharge (ESD) immunity	
5.1	\mathcal{E} \checkmark \checkmark	
6.	Radio-Frequency, Electromagnetic Field immunity	
6.1	1 5, 6	
7.	Electrical Fast transients/burst immunity	
7.1	J	
8.	Surge Immunity	
8.1		
9.	Immunity to Conductive Disturbance	
9.1	3	
10.	Power Frequency Magnetic Field immunity	
10.		
11.	Voltage Dips, Short Interruption and Voltage Variation immunity	
11.		
12.	Harmonics	
12.		
13.		
13.	ϵ	
14.	Appendix	33

14.1	Appendix A: Test Equipment	33
14.1.1	Test Equipment List	33
14.1.2	Software for Controlling Spectrum/Receiver and Calculating Test Data	35
14.2	Appendix B: Uncertainty of Measurement	36
14.3	Appendix C: Photographs of EUT Configuration Test Set Up	38
14.3.1	Photo of Main Power Port Conducted Emission and Telecommunication Port Conducted Em	
Measur	rement	
14.3.2	Photo of Radiated Emission Measurement	40
14.3.3	Photo of ESD Measurement	41
14.3.4	Photo of RF Field Strength Susceptibility Measurement	41
14.3.5	Photo of Electrical Fast Transient/Burst Measurement	42
14.3.6	Photo of Surge Measurement	42
14.3.7	Photo of Conductive Measurement	43
14.3.8	Photo of Magnetic field Measurement	43
14.3.9	Photo of Voltage Dips Measurement	44
14.3.10	Photo of Harmonics and Voltage Fluctuations	44
14.4	Appendix D: Photographs of EUT Please refer to the File of ISL-11HE048P	45

1. General

1.1 Certification of Accuracy of Test Data

Standards: Please refer to 1.2

Equipment Tested: Network Attached Storage

Model: TS-412U; TS-412U II; TS-412U Pro II; TS-412U Pro-G;

TS-412U-G; TS-412U Pro II-G; TS-412U II-G; TS-412U Pro-M; TS-412U M; NAS-412U Pro-G; NAS-412U Pro II-G; NAS-412U II-G; NAS-412U-G; NAS-412UG

Brand: QNAP

Applicant: QNAP Systems, Inc.

Sample received Date: 2/23/2011

Final test Date: EMI:refer to the date of test data

EMS: 2009-08-12T00:00:00

Test Site: International Standards Laboratory

OATS 01; OATS01; Conduction 01; Immunity01

Test Distance: 10M

Temperature: refer to each site test data **Humidity:** refer to each site test data

Input power: Conduction input power: AC 230 V / 50 Hz

Radiation input power: AC 230 V / 50 Hz Immunity input power: AC 230 V / 50 Hz

Report Number: ISL-11HE048CE

Test Result: PASS

Report Engineer: Midori Su

Test Engineer:

Louis Yu

Approved By:

Jim Chu / Director

1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory in accordance with the following

EN 55022:2006 + A1:2007 / CISPR 22:2005 + A1:2005 / AS/NZS CISPR 22:2009: Class B: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN55024:1998+A1:2001+A2:2003 / CISPR 24:1997+A1:2001+A2:2002: Information technology equipment-Immunity characteristics-Limits and methods of measurement.

Standard	Description	Results	Criteria
EN 61000-4-2: 1995+A1: 1998+A2: 2001 IEC 61000-4-2: 1995+A1: 1998+A2: 2000	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 IEC 61000-4-3:2006+A1:2007	Radio-Frequency, Electromagnetic Field	Pass	A
EN 61000-4-4: 2004 IEC 61000-4-4: 2004	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5: 2006 IEC 61000-4-5: 2005	Surge	Pass	В
EN 61000-4-6: 2007 IEC 61000-4-6: 2003+A1:2004+A2: 2006	Conductive Disturbance	Pass	A
EN 61000-4-8: 1993+A1: 2001 IEC 61000-4-8: 1993+A1: 2000	Power Frequency Magnetic Field	Pass	A
EN 61000-4-11: 2004 IEC 61000-4-11: 2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

Standard	Description	Results
EN 61000-3-2: 2006 IEC 61000-3-2: 2005	Limits for harmonics current emissions	Pass
EN 61000-3-3: 2008 IEC 61000-3-3: 2008	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

1.3 Description of EUT

EUT

Description: Network Attached Storage

Condition: Pre-Production

Model: TS-412U; TS-412U II; TS-412U Pro II; TS-412U Pro-G;

TS-412U-G; TS-412U Pro II-G; TS-412U II-G; TS-412U Pro-M; TS-412U M; NAS-412U Pro-G; NAS-412U Pro II-G;

NAS-412U II-G; NAS-412U-G; NAS-412UG

Serial Number: N/A

Power Supply Type: DELTA (Model: DPS-250AB-44D) REV:00F

AC INPUT: 100~240V 3.5A, 47~63Hz OUTPUT: +3.3V/6A, +5VSB /2A,

+5V/12A, -12V/0.5A,

Report Number: ISL-11HE048CE

+12V/17A

MAX.POWER:250W

MAX.COMBINED POWER ON+5V&3.3V OUTPUT IS 60W MAX.COMBINEDPOWERON+5V&+3.3V&+12V OUTPUT

IS 240W

Power Switch Button: one

E-Serial ATA port: two (7-pins) USB 2.0 Port: four (4-pins)

RJ45 Connector: two (8-pins) (10/100/1000Mbps)

Hard Disk: Western Digital (Model: WD5000AACS-00G881)*4

500GB

All types of EUT Connect have been tested. The worst data listed in this test report.

Test Configuration:

Mode	Hard Disk	LAN1	LAN2	Power
				Supply
1	Western	1000Mbps	1000Mbs	DELTA
	Digital			(Model :DP
	(Model:			S-250AB-44
	WD5000AAC			D) REV:00F
	S-00G881)*4			

EMI Noise Source

Crystal: 32.768KHz (Y1), 12MHz (Y2), 25MHz (Y3), 25MHz (Y4), 25MHz (Y5) 25MHz(OSC2)

EMI Solution:

N/A

1.4 Description of Support Equipment

Unit	Model	Brand	Power Cord	FCC ID
	Serial No.			
Notebook Personal	Latitude D400	DELL	Non-shielded,	FCC DOC
Computer	S/N: N/A		Detachable	
External HDD	OT-201	A-TEC	N/A	FCC DOC
Enclosure*4	S/N: NA			
E-SATA External	QBack-35S	QNAP	Non-shielded,	FCC DOC
Hard Disk*2			Detachable	
Rack mountable	DGS-1008D	D-Link	Non-shielded,	FCC DOC
Switch			Detachable	

1.5 Software for Controlling Support Unit

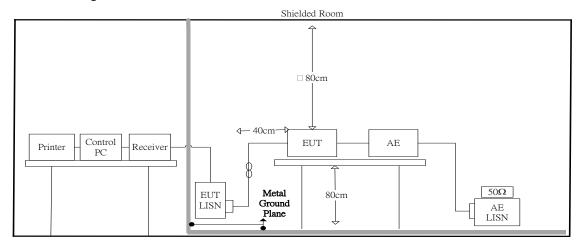
Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Read and write to the disk drives.
- B. Read and write data in the E-SATA Hard Disk through EUT E-SATA port.
- C. R/W External HDD Enclosure from USB Port.
- D. R/W External Hard Disk from USB Port.
- E. Send signal from EUT to server through LAN port.
- F. Repeat the above steps.

	Filename	Issued Date
LAN	ping.exe	05/05/1999
EUT Hard Disk	InterEMC.exe	5/21/1996
External Hard Disk	InterEMC.exe	5/21/1996
E-SATA	Intel EMC.exe	9/04/2000

Report Number: ISL-11HE048CE

1.6 I/O Cable Condition of EUT and Support Units


Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to EUT SPS	1.8M	Nonshielded, Detachable	Plastic Head
USB Data Cable*4	External HDD Enclosure USB Port to PC USB Port	0.98M	Non-shielded, Detachable (With Core)	Metal Head
E-SATA Data Cable*2	External Hard disk E-S ATA Port to EUT E-SATA Port	1.0M	Shielded, Detachable	Metal Head
LAN Data Cable	Server to EUT RJ 45 Connector	33 feet	Non-shielded, Detachable	RJ-45, with Plastic Head
LAN Data Cable*2	EUT RJ 45 Connector to Switch RJ 45 Connector.	2.0M	Non-shielded, Detachable	RJ-45, with Plastic Head

2. Power Main Port Conducted Emissions

2.1 Test Setup and Procedure

2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a $3.5 \text{m} \times 3.4 \text{m} \times 2.5 \text{m}$ shielded room, which referred as Conduction 01 test site, or a $3 \text{m} \times 3 \text{m} \times 2.3 \text{m}$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction $1.0 \text{m} \times 1.5 \text{m}$ table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

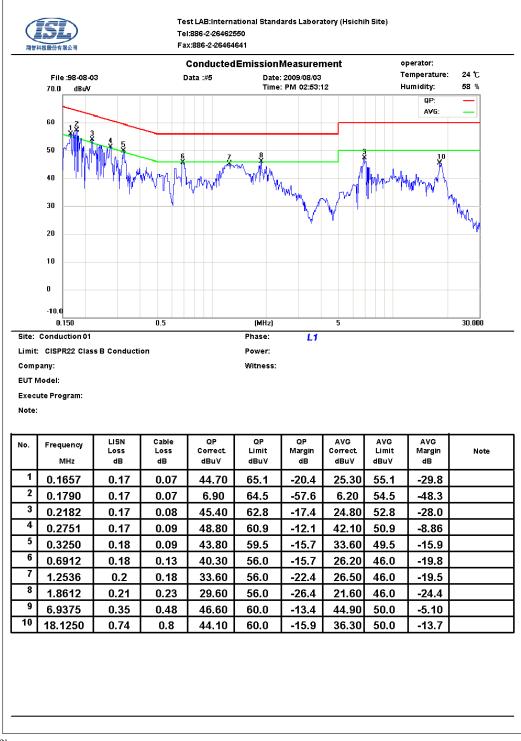
The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

Report Number: ISL-11HE048CE

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz

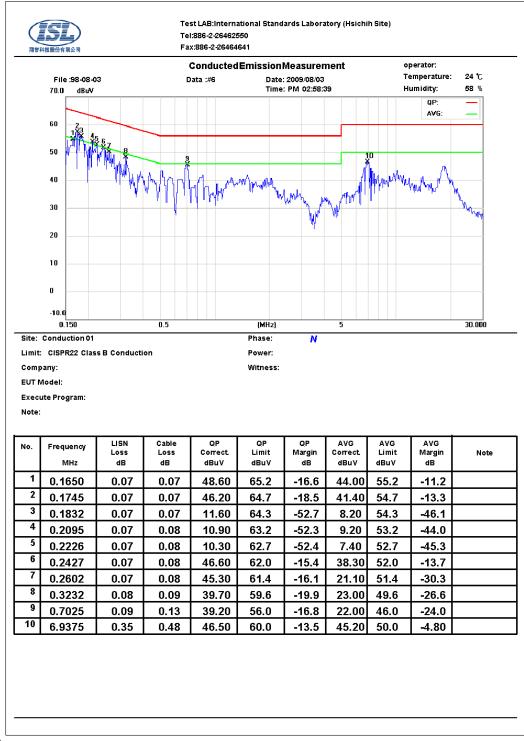

Detector Function: Quasi-Peak / Average Mode

Resolution Bandwidth: 9KHz

2.2 Conduction Test Data: Configuration 1

Table 2.2.1 Power Line Conducted Emissions (Hot)

Note:


 $Margin = Corrected\ Amplitude\ -\ Limit$

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

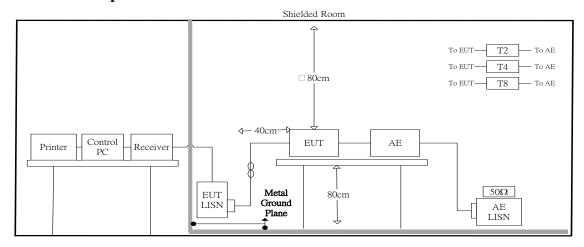
Table 2.2.2 Power Line Conducted Emissions (Neutral)

Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3. Telecommunication Port Conducted Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

The measurements are performed in a $3.5 \text{m} \times 3.4 \text{m} \times 2.5 \text{m}$ shielded room, which referred as Conduction 01 test site, or a $3 \text{m} \times 3 \text{m} \times 2.3 \text{m}$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction $1.0 \text{m} \times 1.5 \text{m}$ table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement.

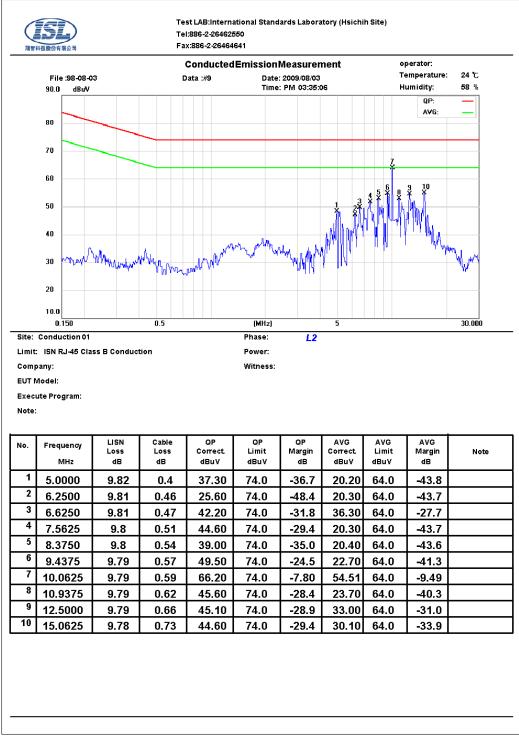
Power to the EUT was provided through the LISN which has the Impedance (50 Ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISN was filtered to eliminate ambient signal interference and this filter was bonded to ground. Peripheral equipment to provide a functional system (support equipment) for EUT testing was powered through a ganged, metal power outlet box bonded to the ground. AC input power for the auxiliary power outlets was obtained from the same filtered source that provides input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

Report Number: ISL-11HE048CE

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 150KHz--30MHz


Detector Function: Quasi-Peak / Average Mode

Resolution Bandwidth: 9KHz

3.2 Test Data: LAN--10M: Configuration 1

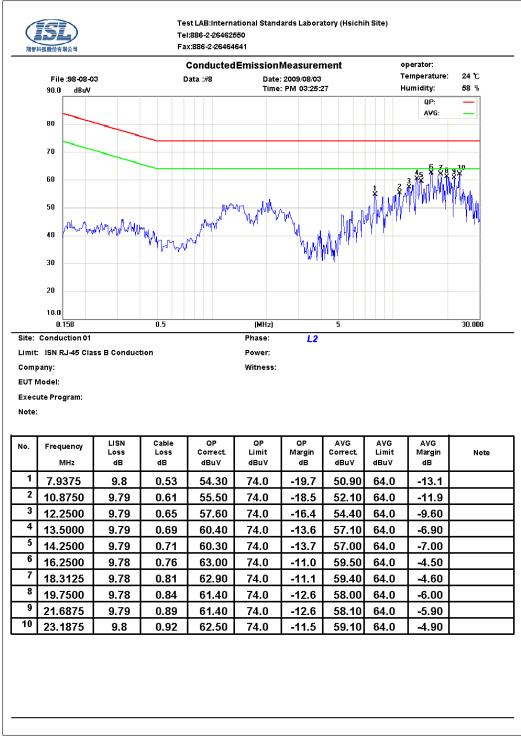
Table 3.2.1 Telecommunication Port Conducted Emission

Note:

 $Margin = Corrected\ Amplitude\ -\ Limit$

 $Corrected\ Amplitude = Receiver\ Reading + LISN\ Loss + Cable\ Loss$

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.3 Test Data: LAN--100M: Configuration 1

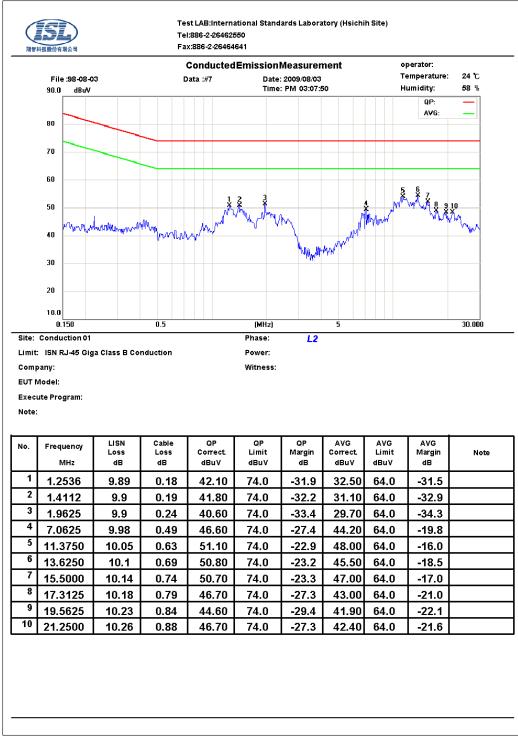
Table 3.3.1 Telecommunication Port Conducted Emission

Note:

Margin = Corrected Amplitude - Limit

 $Corrected\ Amplitude = Receiver\ Reading + LISN\ Loss + Cable\ Loss$

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for $\ensuremath{\mathrm{QP/AVG}}$ test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.4 Test Data: LAN--GIGA (Voltage): Configuration 1

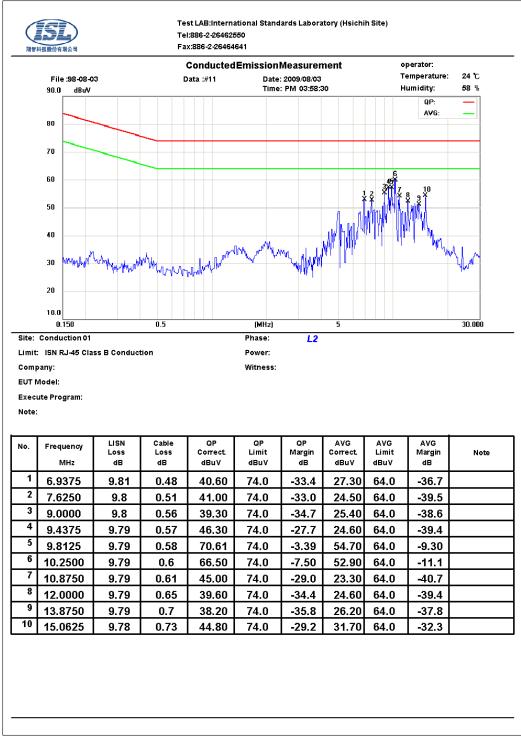
Table 3.4.1 Telecommunication Port Conducted Emission

Note:

Margin = Corrected Amplitude - Limit

 $Corrected\ Amplitude = Receiver\ Reading + LISN\ Loss + Cable\ Loss$

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for $\ensuremath{\mathrm{QP/AVG}}$ test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.5 Test Data: LAN--10M: Configuration 2

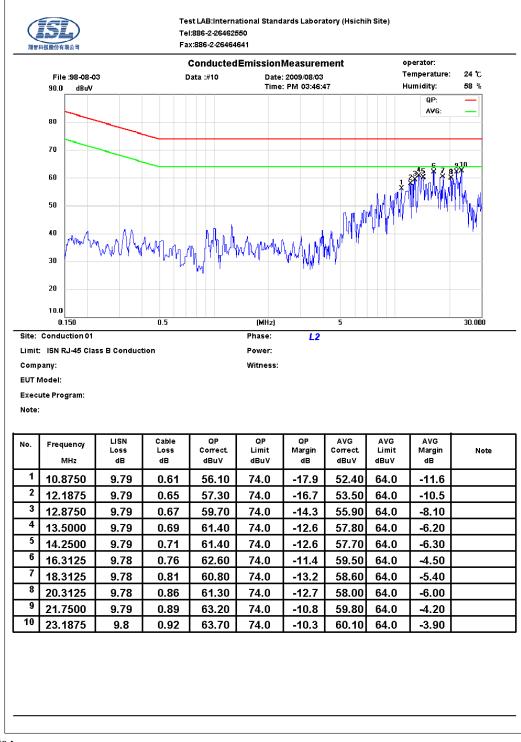
Table 3.5.1 Telecommunication Port Conducted Emission

Note:

Margin = Corrected Amplitude - Limit

 $Corrected\ Amplitude = Receiver\ Reading + LISN\ Loss + Cable\ Loss$

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.6 Test Data: LAN--100M: Configuration 2

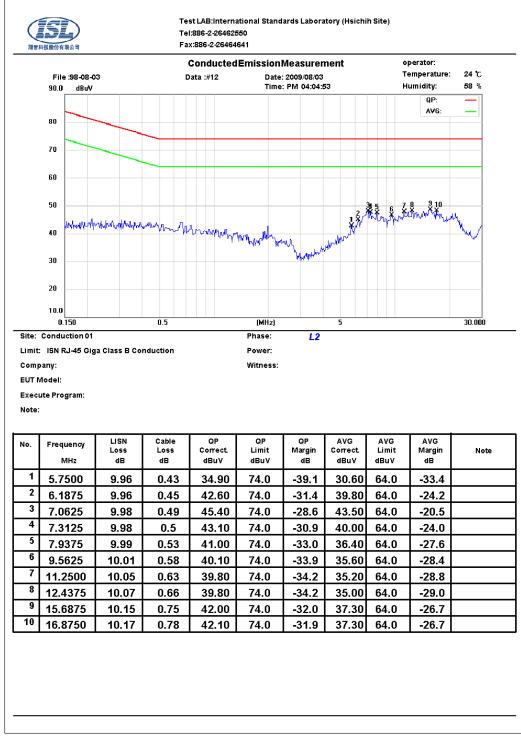
Table 3.6.1 Telecommunication Port Conducted Emission

Note:

Margin = Corrected Amplitude - Limit

 $Corrected\ Amplitude = Receiver\ Reading + LISN\ Loss + Cable\ Loss$

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for $\ensuremath{\mathrm{QP/AVG}}$ test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.7 Test Data: LAN--GIGA (Voltage): Configuration 2

Table 3.7.1 Telecommunication Port Conducted Emission

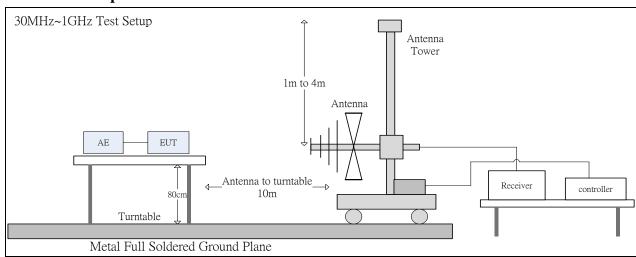
Note:

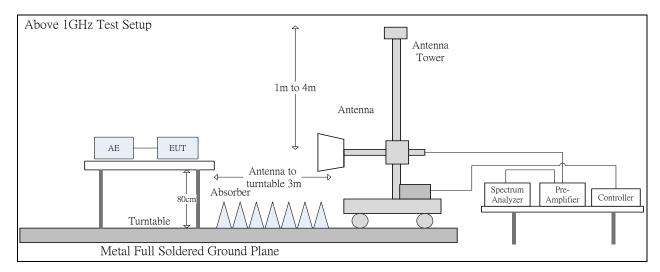
Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for $\ensuremath{\mathrm{QP/AVG}}$ test result.


If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.



4. Radiated Disturbance Emissions

4.1 Test Setup and Procedure

4.1.1 Test Setup

4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.

Report Number: ISL-11HE048CE

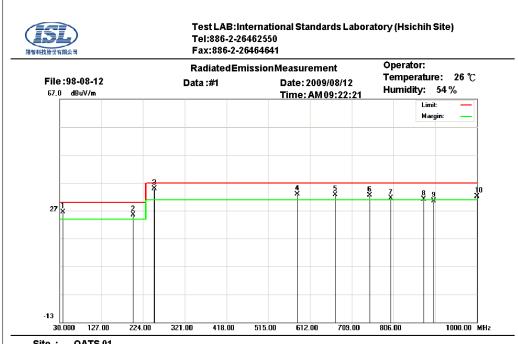
At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: 30MHz--1000MHz Detector Function: Quasi-Peak Mode

Resolution Bandwidth: 120KHz


Frequency Range: Above 1 GHz to 6 GHz Detector Function: Peak/Average Mode

Resolution Bandwidth: 1MHz

4.2 Radiation Test Data: Configuration 1

Table 4.2.1 Radiated Emissions (Horizontal)

OATS 01

Condition: CISPR22 ClassB 10M Radiation

Horizontal Polarization:

Report Number: ISL-11HE048CE

Company: Power: **EUT Model:** Witness:

Execute Program:

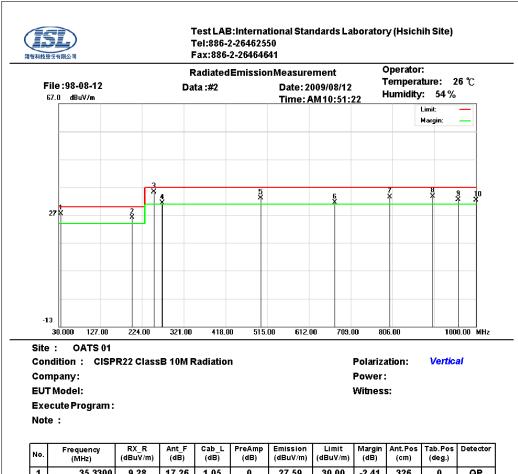
Note:

No.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	37.4996	9.88	15.65	1.07	0	26.60	30.00	-3.40	400	55	QP
2	199.9950	10.52	12.8	2.28	0	25.60	30.00	-4.40	346	255	QP
3	250.0016	21.12	11.3	2.57	0	34.99	37.00	-2.01	400	15	QP
4	582.9000	10.25	18.43	4.17	0	32.85	37.00	-4.15	125	176	QP
5	671.1700	8.38	19.87	4.51	0	32.76	37.00	-4.24	100	283	QP
6	750.0600	7.17	20.6	4.82	0	32.59	37.00	-4.41	158	241	QP
7	799.9792	5.23	21.2	5.01	0	31.44	37.00	-5.56	152	245	QP
8	874.9723	3.74	22.1	5.3	0	31.14	37.00	-5.86	100	232	QP
9	900.0575	2.70	22.4	5.4	0	30.50	37.00	-6.50	100	236	QP
10	999.9872	3.29	23.2	5.65	0	32.14	37.00	4.86	100	249	QP

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain


A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

Table 4.2.2 Radiated Emissions (Vertical)

No.	Frequency (MHz)	RX_R (dBuV/m)	Ant_F (dB)	Cab_L (dB)	PreAmp (dB)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	35.3300	9.28	17.26	1.05	0	27.59	30.00	-2.41	326	0	QP
2	199.7550	11.15	12.76	2.28	0	26.19	30.00	-3.81	100	261	QP
3	250.5310	21.34	11.34	2.57	0	35.25	37.00	-1.75	100	188	QP
4	269.5938	15.54	13.15	2.69	0	31.38	37.00	-5.62	163	228	QP
5	499.4800	11.51	17.69	3.82	0	33.02	37.00	-3.98	100	308	QP
6	671.1715	7.17	19.87	4.51	0	31.55	37.00	-5.45	123	167	QP
7	799.9795	7.28	21.2	5.01	0	33.49	37.00	-3.51	322	60	QP
8	900.0482	5.94	22.4	5.4	0	33.74	37.00	-3.26	256	238	QP
9	959.2600	4.21	22.79	5.56	0	32.56	37.00	-4.44	100	235	QP
10	999.9715	3.36	23.2	5.65	0	32.21	37.00	-4.79	299	309	QP

* Note:

Margin = Corrected Amplitude - Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

5. Electrostatic discharge (ESD) immunity

5.1 Electrostatic discharge (ESD) immunity test

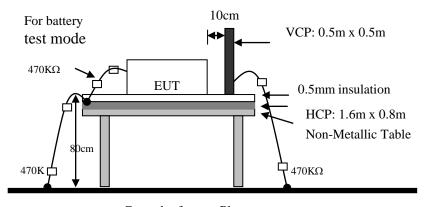
Port:	Enclosure
Basic Standard:	EN 61000-4-2/ IEC EN61000-4-2
	(details referred to Sec 1.2)
Test Level:	Air +/- 2 kV, +/- 4 kV, +/- 8 kV
	Contact +/- 2 kV, +/- 4 kV
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S7
Temperature:	24 °C
Humidity:	56%

Selected Test Point

Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air

discharges were applied to each selected points.

Contact: Total 200 discharges minimum were to the selected contact points.


Indirect Contact Points: 25 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

For final test points, please refer to EUT 14 of Appendix: Photographs of EUT. Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.

Test Setup

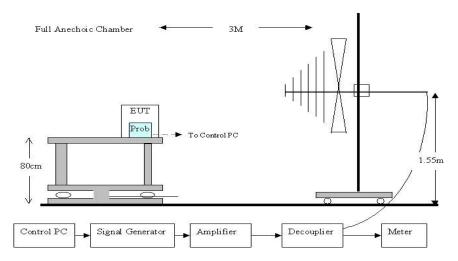
EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one $470K\Omega$ resister at two rare ends is connected from metallic part of EUT and screwed to HCP.

Report Number: ISL-11HE048CE

Ground reference Plane

Test Result

6. Radio-Frequency, Electromagnetic Field immunity


6.1 Radio-Frequency, Electromagnetic Field immunity test

Port:	Enclosure
Basic Standard:	EN 61000-4-3/ IEC EN61000-4-3
	(details referred to Sec 1.2)
Test Level::	3 V/m
Modulation:	AM 1KHz 80%
Frequency range:	80 MHz~1 GHz
Frequency Step:	1% of last step frequency
Dwell time:	3s
Polarization:	Vertical and Horizontal
EUT Azimuth Angle	⊠0° ⊠90° ⊠180° ⊠270°
Criteria:	A
Test Procedure	refer to ISL QA -T4-E-S8
Temperature:	24°C
Humidity:	62%

Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.

Report Number: ISL-11HE048CE

Test Result

7. Electrical Fast transients/burst immunity

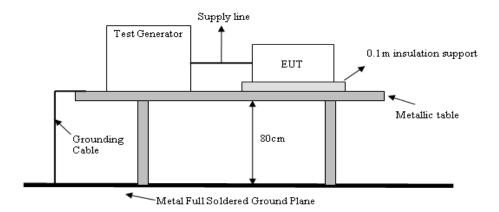
7.1 Electrical Fast transient/burst immunity test

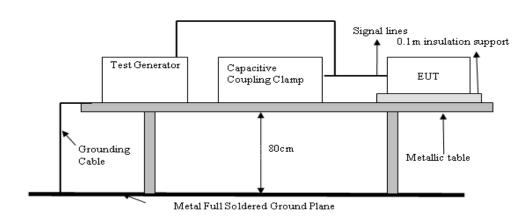
Port:	AC mains; Twisted Pair LAN Port
Basic Standard:	EN 61000-4-4/ IEC EN61000-4-4
	(details referred to Sec 1.2)
Test Level:	AC Power Port : +/- 1 kV
	Twisted Pair LAN Port (I/O Cables):
	+/- 0.5 kV
Rise Time:	5ns
Hold Time:	50ns
Repetition Frequency:	5KHz
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S9
Temperature:	25 °C
Humidity:	60%

Test Procedure

The EUT was setup on a nonconductive table 0.1 m above a reference ground plane.

Test Points	Polarity	Result	Comment
Line	+	N	60 sec
	1	N	60 sec
Neutral	+	N	60 sec
	-	N	60 sec
Ground	+	N	60 sec
	-	N	60 sec
Line to	+	N	60 sec
Neutral	-	N	60 sec
Line to	+	N	60 sec
Ground	-	N	60 sec
Neutral to	+	N	60 sec
Ground	-	N	60 sec
Line to Neutral	+	N	60 sec
to Ground	-	N	60 sec
Capacitive coupling	+	N	60 sec
clamp	-	N	60 sec


Note: 'N' means normal, the EUT function is correct during the test.

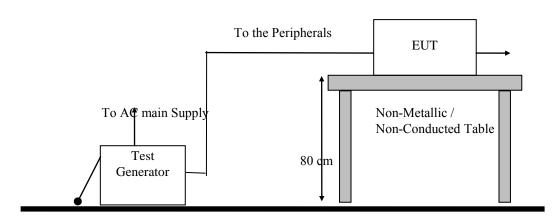


Report Number: ISL-11HE048CE

Test Setup

EUT is at least 50cm from the conductive structure.

Test Result


8. Surge Immunity

8.1 Surge immunity test

Port:	AC mains
Basic Standard:	EN 61000-4-5/ IEC EN61000-4-5
	(details referred to Sec 1.2)
Test Level:	AC Power Port:
	Line to Line: +/- 0.5 kV, +/- 1 kV
	Line to Earth: +/- 0.5 kV, +/- 1 kV, +/- 2kV
Rise Time:	1.2us
Hold Time:	50us
Repetition Rate:	30 second
Angle:	⊠0° ⊠90° ⊠180° ⊠270°
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S10
Temperature:	25°C
Humidity:	60%

Test Setup

AC power supply and Voltage Supply to EUT

Metal Full Soldered Ground Plane

Report Number: ISL-11HE048CE

Test Result

9. Immunity to Conductive Disturbance

9.1 Immunity to Conductive Disturbance

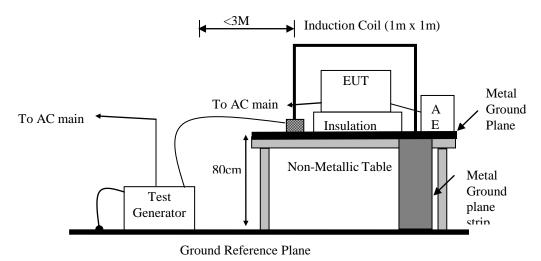
Port:	AC mains; Twisted Pair LAN Port
Basic Standard:	EN 61000-4-6/ IEC EN61000-4-6
	(details referred to Sec 1.2)
Test Level::	3 V
Modulation:	AM 1KHz 80%
Frequency range:	0.15 MHz - 80MHz
Frequency Step:	1% of last Frequency
Dwell time:	3s
Criteria:	A
CDN Type:	CDN M2+M3, CDN T2, CDN T4, CDN
	T8, EM Clamp
Test Procedure	refer to ISL QA -T4-E-S11
Temperature:	24°C
Humidity:	56%

Test Setup

Report Number: ISL-11HE048CE

Reference Ground Plane

Test Result



10. Power Frequency Magnetic Field immunity

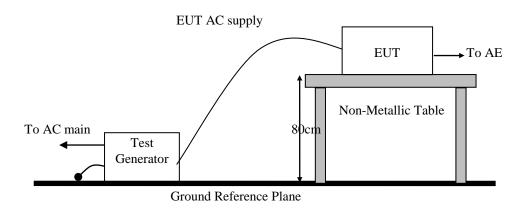
10.1 Power Frequency Magnetic field immunity test

Port:	Enclosure		
Basic Standard:	EN 61000-4-8/ IEC EN61000-4-8		
	(details referred to Sec 1.2)		
Test Level:	1A/m		
Polarization:	X, Y, Z		
Criteria:	A		
Test Procedure	refer to ISL QA -T4-E-S12		
Temperature:	25°C		
Humidity:	60%		

Test Setup

Report Number: ISL-11HE048CE

Test Result



11. Voltage Dips, Short Interruption and Voltage Variation immunity

11.1 Voltage Dips, Short Interruption and Voltage Variation immunity test

Port:	AC mains
Basic Standard:	EN 61000-4-11/ IEC EN61000-4-11
	(details referred to Sec 1.2)
Test Level:	>95% in 0.5 period
Criteria:	В
Test Level:	30% in 25 period
Criteria:	C
Test Level:	>95% in 250 period
Criteria:	C
Phase:	0°; 180°
Test intervals:	3 times with 10s each
Test Procedure	refer to ISL QA -T4-E-S13
Temperature:	25°C
Humidity:	60%

Test Setup

Report Number: ISL-11HE048CE

Test Result

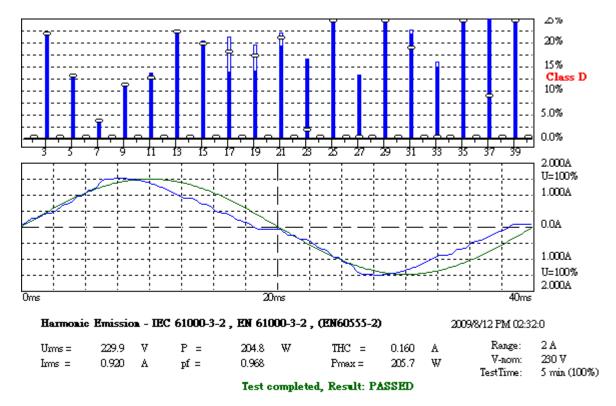
12. Harmonics

12.1 Harmonics test

Port:	AC mains
Active Input Power:	>75W
Basic Standard:	EN61000-3-2/IEC 61000-3-2
	(details referred to Sec 1.2)
Test Duration:	2.5min
Class:	D
Test Procedure	refer to ISL QA -T4-E-S14
Temperature:	24°C
Humidity:	57%

Test Procedure

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.


Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.

Report Number: ISL-11HE048CE

Result

Performance of EUT complies with the given specification.

Test Data

HAR-1000 PMC-Return

Report Number: ISL-11HE048CE

Urms = 229.9V Freq = 50.013 Range: 2 A Irms = 0.920A Ipk = 1.511A cf = 1.642 P = 204.8W S = 211.5VA pf = 0.968 THDi = 17.4 % THDu = 0.10 % Class D

Test - Time : 5min (100 %)

Limit Reference: Pmax = 205.74W

Test completed, Result: PASSED

Order	Freq. [Hz]	Iavg [A]	Iavg%L [%]	Irms [A]	Irms%L [%]	Imax [A]	Imax%L [%]	Limit [A]
1	50	0.8995	[10]	0.9060	[10]	0.9108	[10]	[A]
2	100	0.0000		0.0010		0.0013		
3	150	0.1514	21.638	0.1483	21.202	0.1543	22.057	0.6995
4	200	0.0000		0.0002		0.0004		
5	250	0.0501	12.816	0.0487	12.460	0.0515	13.178	0.3909
6	300	0.0000		0.0004		0.0004		
7	350	0.0069	3.3451	0.0061	2.9666	0.0076	3.6786	0.2057
8	400	0.0000		0.0004		0.0004		
9	450	0.0111	10.808	0.0115	11.154	0.0115	11.154	0.1029
10	500	0.0000		0.0002		0.0004		

								翔智科技股份有限公 International Standards Laborat
Order	Freq.	Iavg	Iavg%L					Limit
	[Hz]	[A]	[%]	[A]	[%]	[A]	[%]	[A]
11	550	0.0089	12.345	0.0096	13.392	0.0096	13.392	0.0720
12	600	0.0000		0.0004		0.0004		
13	650	0.0135	22.077	0.0137	22.438	0.0137	22.438	0.0609
14	700	0.0000		0.0005		0.0005		
15	750	0.0102	19.306	0.0106	20.111	0.0106	20.111	0.0528
16	800	0.0000		0.0005		0.0005		
17	850	0.0083	17.780	0.0063	13.623	0.0098	20.959	0.0466
18	900	0.0000		0.0004		0.0005		
19	950	0.0071	16.915	0.0057	13.762	0.0081	19.325	0.0417
20	1000	0.0000		0.0002		0.0002		
21	1050	0.0078	20.641	0.0072	19.094	0.0082	21.683	0.0377
22	1100	0.0000		0.0002		0.0004		
23	1150	0.0005	1.3216	0.0056	16.305	0.0056	16.305	0.0344
24	1200	0.0000		0.0002		0.0002		
25	1250	0.0102	32.075	0.0087	27.354	0.0111	35.060	0.0317
26	1300	0.0000		0.0004		0.0004		
27	1350	0.0000	0.0000	0.0038	12.899	0.0038	12.899	0.0293
28	1400	0.0000		0.0004		0.0004		
29	1450	0.0098	35.775	0.0095	34.859	0.0100	36.647	0.0273
30	1500	0.0000		0.0004		0.0005		
31	1550	0.0048	18.834	0.0055	21.498	0.0057	22.454	0.0256
32	1600	0.0000		0.0004		0.0004		
33	1650	0.0000	0.0000	0.0035	14.748	0.0038	15.765	0.0240
34	1700	0.0000		0.0004		0.0005		
35	1750	0.0125	55.132	0.0126	55.556	0.0127	56.096	0.0226
36	1800	0.0000		0.0005		0.0006		
37	1850	0.0018	8.5837	0.0062	29.080	0.0062	29.080	0.0214
38	1900	0.0000		0.0004		0.0005		
39	1950	0.0056	27.603	0.0062	30.652	0.0063	31.253	0.0203
40	2000	0.0000		0.0004		0.0004		

13. Voltage Fluctuations

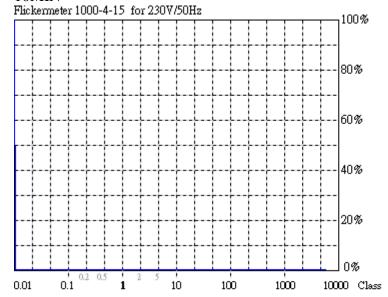
13.1 Voltage Fluctuations test

Port:	AC mains			
Basic Standard:	EN61000-3-3/IEC61000-3-3			
	(details referred to Sec 1.2)			
Test Procedure	refer to ISL QA -T4-E-S14			
Observation period:	For Pst 10min			
	For Plt 2 hours			
Temperature:	24°C			
Humidity:	57%			

Test Procedure

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.

Report Number: ISL-11HE048CE


Result

Performance of EUT complies with the given specification.

Test Data

10MIN

Actual Flicker (Fli): 0.00

0.07 Short-term Flicker (Pst):

Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07 Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00% Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.30%

Maximum Interval

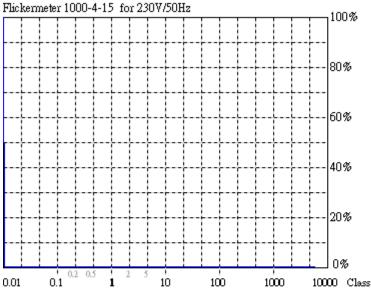
exceeding 3.30% (dt): 0.00ms

Limit (dt>Lim): 500ms

Flicker Emission - IEC 61000-3-3, EN 61000-3-3, (EN60555-3)

Urms =	229.7	V	P =	204.1	W
Ims =	0.917	Α	pf =	0.969	

2009/8/12 PM 02:43:3


Range: 2 A 230 V V-nom:

TestTime: 10 min (100%)

Test completed, Result: PASSED

HAR-1000 PMC-Partner

120MIN

Actual Flicker (Fli): 0.00

0.07 Short-term Flicker (Pst): 1.00 Limit (Pst):

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00% 4.00%

Limit (dmax):

Relative Steady-state

0.00% Voltage Change (dc): Limit (dc): 3.30%

Maximum Interval

exceeding 3.30% (dt): 0.00ms 500ms Limit (dt>Lim):

Flicker Emission - IEC 61000-3-3, EN 61000-3-3, (EN60555-3)

229.5 V P = 203.6 W Ums = 0.915 0.969 Ims = Α pf =

2009/8/12 PM 04:48:4

Report Number: ISL-11HE048CE

Range: 2 A V-nom: 230 V

TestTime: 120 min (10000%)

Test completed, Result: PASSED

HAR-1000 PMC-Partner

14. Appendix

14.1 Appendix A: Test Equipment

14.1.1 Test Equipment List

Location CON01	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	Coaxial Cable 1F-C1	EMEC	5D Cable	1F-C1	10/25/2010	10/25/2011
Conduction	LISN 02	EMCO	3825/2	1407	07/22/2010	07/22/2011
Conduction	LISN 03	R&S	ESH3-Z5	828874/010	07/22/2010	07/22/2011
			831.5518.52			
Conduction	ISN T2 03	FCC	FCC-TLISN-T	20618	08/23/2010	08/23/2011
			2-02			
Conduction	ISN T4 05	FCC	FCC-TLISN-T	20619	08/23/2010	08/23/2011
			4-02			
Conduction	ISN T8 03	FCC	FCC-TLINS-T	20620	08/23/2010	08/23/2011
			8-02			
Conduction	EMI Receiver 08	Schwarzbeck	FCKL 1528	1528-202	09/15/2010	09/15/2011
		Mess-Elektroni				
		k				
Conduction	Spectrum Analyzer 10	Advantest	R3132	111000879	12/17/2010	12/17/2011

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
OATS01						
Radiation	BILOG Antenna 10	Sumol	JB1	A013004-1	07/22/2010	07/22/2011
		Sciences				
Radiation	Coaxial Cable 3F-10M	MIYAZAKI	8D-8F	10M-1	10/25/2010	10/25/2011
Radiation	Coaxial Cable 3F-3M	BELDEN	RG-8/U	3F-3M	10/25/2010	10/25/2011
Radiation	Spectrum Analyzer 12	Advantest	R3132	130200208	03/08/2010	03/08/2011
Radiation	EMI Receiver 13	ROHDE &	ESCI	101015	02/17/2011	02/17/2012
		SCHWARZ				

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
OATS01					Date	Date
Rad. above 1Ghz	Horn Antenna 01	EMCO	3115	9504-4462	11/16/2010	11/16/2011
Rad. above 1Ghz	Horn Antenna 03	COM-Power	AH-826	100A	03/05/2010	03/05/2011
Rad. above 1Ghz	Microwave Cable RF07-3	HUBER+SU HNER AG.	Sucoflex 103	42728/3	07/27/2010	07/27/2011
Rad. above 1Ghz	Preamplifier 17	EMCI	EMC 01630	980009	07/27/2010	07/27/2011

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
EN61K-3-2/3	DC Burn-In Load 02	D-RAM	DBS-2100	2100-910027	N/A	N/A
EN61K-3-2/3	Harmonic/Flicker	EMC Partner	HARMONIC	178	03/29/2010	03/29/2011
	Test System 03		S-1000			
EN61K-4-,4,	TRANSIENT 2000	EMC Partner	TRANSIENT	950	12/01/2010	12/01/2011
5,8,11	01		-2000			
EN61K-4-2	ESD GUN 04	Schaffner	NSG 438	489	03/19/2010	03/19/2011
EN61K-4-3	BILOG Antenna 06	Schaffner	CBL6112B	2754	N/A	N/A
EN61K-4-3	Amplifier 80Mz~1GHz 250W	AR	250W1000A	312494	N/A	N/A
EN61K-4-3	Amplifier 800MHz~3.0GHz 60W	AR	60S1G3	312762	N/A	N/A
EN61K-4-3	Broadband coupler 10K~220Mhz	Amplifier Research	DC2500	19810	N/A	N/A
EN61K-4-3	Broadband Coupler 80M~1GHz	Amplifier Research	DC6180	20364	N/A	N/A
EN61K-4-3	Broadband Coupler 1~4GHz	Werlatone	C5291	6516	N/A	N/A
EN61K-4-3	Coaxial Cable Chmb 04-3M-2	Belden	RG-8/U	Chmb 04-3M-2	N/A	N/A
EN61K-4-3	Signal Generator 03	Anritsu	MG3642A	6200162550	03/18/2010	03/18/2011
EN61K-4-4	Digital Oscilloscope	Tektronix	TDS 684A	B010761	N/A	N/A
EN61K-4-4	EFT Clamp	Precision	1604242	CNEFT1000- 103	N/A	N/A
EN61K-4-5	CDN-UTP8 01	EMC Partner	CDN-UTP8	032	12/01/2010	12/01/2011
EN61K-4-5	SURGE-TESTER 01	EMC Partner	MIG0603IN3	778	12/01/2010	12/01/2011
EN61K-4-6	6dB Attenuator	Weinschel Corp	33-6-34	BC5975	N/A	N/A
EN61K-4-6	Amplifier 4-6	Amplifier Research	150A100	1-1-R-02157	N/A	N/A
EN61K-4-6	Attenuator 6dB 4-6	BIRO	100-A-FFN-0 6	0123	N/A	N/A
EN61K-4-6	CDN M2+M3	Frankonia	M2+M3	A3011016	07/22/2010	07/22/2011
EN61K-4-6	CDN T2 01	Frankonia	T2	A3010003	07/22/2010	07/22/2011
EN61K-4-6	CDN T4 05	FCC Inc.	FCC-801-T4- RJ45	08020	08/20/2010	08/20/2011
EN61K-4-6	CDN T8 01	FCC Inc.	FCC-801-T8- RJ45	08021	08/20/2010	08/20/2011
EN61K-4-6	EM-Clamp 01	FCC	F-203I-23M M	539	N/A	N/A
EN61K-4-6	Coaxial Cable 4-6	Harbour	M17/128-RG	4-6 01-1	N/A	N/A
	01-1	Industries	400			
EN61K-4-6	Coaxial Cable 4-6 01-2	Harbour Industries	M17/128-RG 400	4-6 01-2	N/A	N/A
EN61K-4-6	Coaxial Cable 4-6 01-3	Harbour Industries	M17/128-RG 400	4-6 01-3	N/A	N/A
EN61K-4-6	KAL-AD RJ45S	BIRO			N/A	N/A
EN61K-4-6	KAL-AD T2	BIRO			N/A	N/A
EN61K-4-6	Passive Impedance Adaptor 4-6	FCC	FCC-801-150 -50-CDN	9758;9759	N/A	N/A

(ISL)
翔智科技股份有限公司 International Standards Laboratory

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
					Date	Date
EN61K-4-6, CISPR 13,	Signal Generator 02	НР	8648B	3642U01040	06/24/2010	06/24/2011
Antenna						
EN61K-4-8	Clamp Meter 4-8	TES	3090	990900322	07/30/2010	07/30/2011
EN61K-4-8	Magnetic Field	Precision	TRAIZ44B	MF1000-23	N/A	N/A
	Antenna					

PS: N/A => The equipment does not need calibration.

14.1.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Test Item	Filename	Version
EN61000-3-2	HARCS.EXE	4.16
EN61000-3-3	HARCS.EXE	4.16
EN61000-4-3	Tile.Exe	2.0.P
EN61000-4-6	EN61000-4-6 Application Software	1.13.e
EN61000-4-2	N/A	2.0
EN61000-4-4	Tema.EXE	1.69
EN61000-4-5	Tema.EXE	1.69
EN61000-4-8	N/A	
EN61000-4-11	VDS-2002Rs.EXE	2.00

Radiation/Conduction	Filename	Version	Issued Date
Hsichih Conduction	EZ EMC	1.1.4.2	2/10/2007
Hsichih Radiation	EZ EMC	1.1.4.2	1/24/2007
		1.1.4.0	
Lung_Tan Conduction	EZ EMC	1.1.4.2	2/10/2007
Lung_Tan Radiation	EZ EMC	1.1.4.2	1/24/2007

14.2 Appendix B: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k=2 yields approximately a 95 % level of confidence.

<Conduction 01> ± 2.946 dB

<OATS 01 (10M)>

Horizontal

30MHz~200MHz: ±4.216 dB 200MHz~1GHz: ±4.438 dB

Vertical

30MHz~200MHz: ±4.342 dB 200MHz~1GHz: ±4.426 dB

<OATS 01 (3M)>

1GHz~18GHz: ±3.489 dB 18GHz~26.5GHz: ±3.582 dB

<Immunity 01>

Test item	Uncertainty	
EN61000-4-2 (ESD)		
Voltage	±1.848%	
First Peak current	±3.233%	
current at 30ns	±3.272%	
current at 60ns	±3.376%	
EN61000-4-3 (RS)	±1.776dB	
EN61000-4-4 (EFT)		
Time	±0.632%	
Voltage	±1 %	
EN61000-4-5 (Surge)		
Time	±1.159 %	
Voltage	±1.633 %	
Current	±1.177 %	
EN61000-4-6 (CS)	±1.892dB	
EN61000-4-8 (Magnetic)	±1.165%	
EN61000-4-11 (Dips)		
Time	±1.159%	
Voltage	±1.414%	
Current	±1.177%	
EN61000-3-2 (Harmonics)	±1.224 %	
EN61000-3-3 (Fluctuations and Flicker)	±1.224 %	

14.3 Appendix C: Photographs of EUT Configuration Test Set Up

14.3.1 Photo of Main Power Port Conducted Emission and Telecommunication Port Conducted Emission Measurement

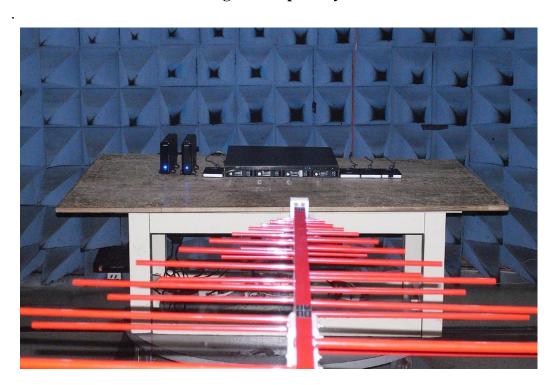
Front View

Back View

14.3.2 Photo of Radiated Emission Measurement

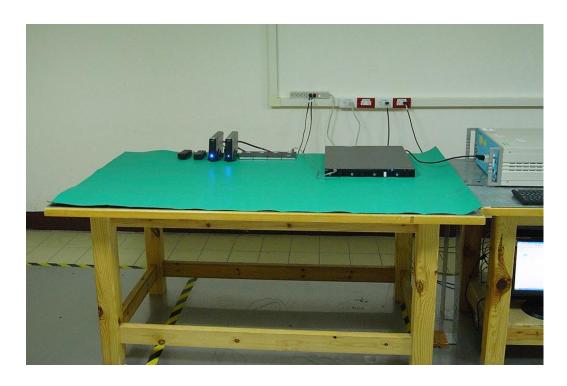
Front View (30MHz~1GHz)

Back View (30MHz~1GHz)

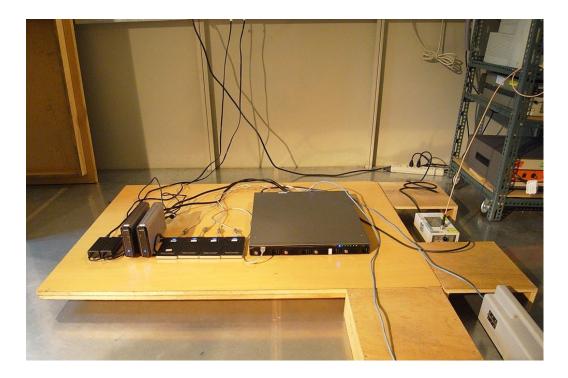


14.3.3 Photo of ESD Measurement

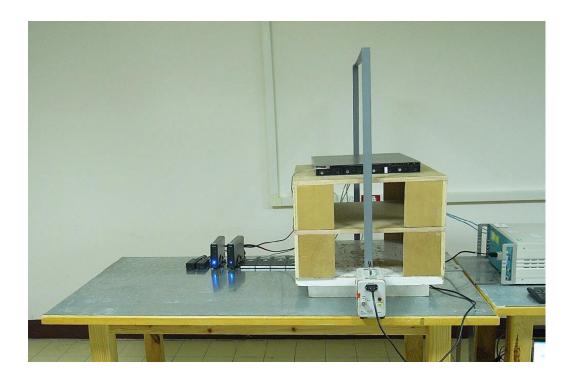
14.3.4 Photo of RF Field Strength Susceptibility Measurement



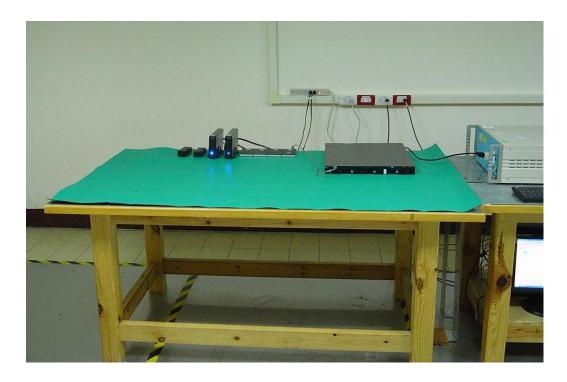
14.3.5 Photo of Electrical Fast Transient/Burst Measurement



14.3.6 Photo of Surge Measurement



14.3.7 Photo of Conductive Measurement



14.3.8 Photo of Magnetic field Measurement

14.3.9 Photo of Voltage Dips Measurement

14.3.10 Photo of Harmonics and Voltage Fluctuations

14.4 Appendix D: Photographs of EUT

Please refer to the File of ISL-11HE048P