

Issue Date: Ref. Report No.

August 7, 2012 ISL-12HE227CE

| Product Name             | : | Video Server                                                             |
|--------------------------|---|--------------------------------------------------------------------------|
| Model(s)                 | : | GV-VS14                                                                  |
| Brand Name               | : | Geo Vision                                                               |
| <b>Responsible Party</b> | : | GeoVision Inc                                                            |
| Address                  | : | 9F., No. 246, Sec. 1, Neihu Rd., Neihu District, Taipei City 114, Taiwan |

#### We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive- EMC Directive 2004/108/EC. The device was passed the test performed according to :

#### Standards:

EN 55022: 2010 and CISPR 22: 2008 (modified) EN 61000-3-2: 2006+A1:2009 +A2:2009 and IEC 61000-3-2: 2005+A1:2008 +A2:2009 EN 61000-3-3: 2008 and IEC 61000-3-3: 2008 EN 55024: 2010 and CISPR 24: 2010 EN 61000-4-2: 2009 and IEC 61000-4-2: 2008 EN 61000-4-3: 2006+A1: 2008 +A2: 2010 and IEC 61000-4-3: 2006+A1: 2007+A2: 2010 EN 61000-4-4: 2004 +A1:2010 and IEC 61000-4-4: 2004 +A1:2010 EN 61000-4-5: 2006 and IEC 61000-4-5: 2005 EN 61000-4-6: 2009 and IEC 61000-4-6: 2008 EN 61000-4-8: 2010 and IEC 61000-4-8: 2009 EN 61000-4-11: 2004 and IEC 61000-4-11: 2004

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

#### **International Standards Laboratory**

Jim Chu

Jim Chu / Director

☑ Hsi-Chih LAB:
 No. 65, Gu Dai Keng St., Hsichih District,
 New Taipei City 22179, Taiwan
 Tel: 886-2-2646-2550; Fax: 886-2-2646-4641



# **CE MARK TECHNICAL FILE**

# **AS/NZS EMC CONSTRUCTION FILE**

of

Product Name

## **Video Server**

Model

## GV-VS14

Brand Name

## **Geo Vision**

Contains:

- 1. Declaration of Conformity
- 2. EN55022/CISPR 22, AS/NZS CISPR 22 EMI test report
- 3. EN55024/CISPR 24, EN61000-3-2 / IEC 61000-3-2, and EN61000-3-3 / IEC 61000-3-3 test report
- 4. Block Diagram and Schematics
- 5. Users' manual

### **Declaration of Conformity**

| Name of Responsible Party:    | GeoVision Inc                                                               |
|-------------------------------|-----------------------------------------------------------------------------|
| Address of Responsible Party: | 9F., No. 246, Sec. 1, Neihu Rd., Neihu District,<br>Taipei City 114, Taiwan |
| Declares that product:        | Video Server                                                                |
| Model:                        | GV-VS14                                                                     |
| Brand Name:                   | Geo Vision                                                                  |
| Assembled by:                 | Same as above                                                               |
| Address:                      | Same as above                                                               |

Conforms to the EMC Directive 2004/108/EC as attested by conformity with the following harmonized standards:

EN 55022:2010, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

| Standard                                                                 | Description                                                | Results | Criteria |
|--------------------------------------------------------------------------|------------------------------------------------------------|---------|----------|
| EN 61000-4-2:2009<br>IEC 61000-4-2:2008                                  | Electrostatic Discharge                                    | Pass    | В        |
| EN 61000-4-3:2006+A1:2008 +A2:2010<br>IEC 61000-4-3:2006+A1:2007+A2:2010 | Radio-Frequency, Electromagnetic Field                     | Pass    | А        |
| EN 61000-4-4: 2004 +A1:2010<br>IEC 61000-4-4: 2004 +A1:2010              | Electrical Fast Transient/Burst                            | Pass    | В        |
| EN 61000-4-5: 2006<br>IEC 61000-4-5: 2005                                | Surge                                                      | Pass    | В        |
| EN 61000-4-6:2009<br>IEC 61000-4-6:2008                                  | Conductive Disturbance                                     | Pass    | А        |
| EN 61000-4-8:2010<br>IEC 61000-4-8:2009                                  | Power Frequency Magnetic Field                             | Pass    | А        |
| EN 61000-4-11: 2004<br>IEC 61000-4-11: 2004                              | Voltage Dips / Short Interruption<br>and Voltage Variation |         |          |
|                                                                          | >95% in 0.5 period                                         | Pass    | В        |
|                                                                          | 30% in 25 period                                           | Pass    | С        |
|                                                                          | >95% in 250 period                                         | Pass    | С        |

| Standard                                                                      | Description                                                                | Results |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|
| EN 61000-3-2: 2006 +A1:2009 +A2:2009<br>IEC 61000-3-2: 2005 +A1:2008 +A2:2009 | Limits for harmonics current emissions                                     | Pass    |
| EN 61000-3-3: 2008<br>IEC 61000-3-3: 2008                                     | Limits for voltage fluctuations and flicker in low-voltage supply systems. | Pass    |

<to be continued>

Page 2 of 2 Report No. ISL-12HE227CE

We, GeoVision Inc, hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

GeoVision Inc

Date: August 7, 2012

### **Declaration of Conformity**

| Name of Responsible Party:    | GeoVision Inc                                                               |
|-------------------------------|-----------------------------------------------------------------------------|
| Address of Responsible Party: | 9F., No. 246, Sec. 1, Neihu Rd., Neihu District,<br>Taipei City 114, Taiwan |
| Declares that product:        | Video Server                                                                |
| Model:                        | GV-VS14                                                                     |
| Brand Name:                   | Geo Vision                                                                  |
| Assembled by:                 | Same as above                                                               |
| Address:                      | Same as above                                                               |

Conforms to the C-Tick Mark requirement as attested by conformity with the following standards:

EN 55022:2010, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

| Standard                                                                 | Description                                                | Results | Criteria |
|--------------------------------------------------------------------------|------------------------------------------------------------|---------|----------|
| EN 61000-4-2:2009<br>IEC 61000-4-2:2008                                  | Electrostatic Discharge                                    | Pass    | В        |
| EN 61000-4-3:2006+A1:2008 +A2:2010<br>IEC 61000-4-3:2006+A1:2007+A2:2010 | Radio-Frequency, Electromagnetic Field                     | Pass    | А        |
| EN 61000-4-4: 2004 +A1:2010<br>IEC 61000-4-4: 2004 +A1:2010              | Electrical Fast Transient/Burst                            | Pass    | В        |
| EN 61000-4-5: 2006<br>IEC 61000-4-5: 2005                                | Surge                                                      | Pass    | В        |
| EN 61000-4-6:2009<br>IEC 61000-4-6:2008                                  | Conductive Disturbance                                     | Pass    | А        |
| EN 61000-4-8:2010<br>IEC 61000-4-8:2009                                  | Power Frequency Magnetic Field                             | Pass    | А        |
| EN 61000-4-11: 2004<br>IEC 61000-4-11: 2004                              | Voltage Dips / Short Interruption<br>and Voltage Variation |         |          |
|                                                                          | >95% in 0.5 period                                         | Pass    | В        |
|                                                                          | 30% in 25 period                                           | Pass    | С        |
|                                                                          | >95% in 250 period                                         | Pass    | С        |

| Standard                                                                      | Description                                                                | Results |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|
| EN 61000-3-2: 2006 +A1:2009 +A2:2009<br>IEC 61000-3-2: 2005 +A1:2008 +A2:2009 | Limits for harmonics current emissions                                     | Pass    |
| EN 61000-3-3: 2008<br>IEC 61000-3-3: 2008                                     | Limits for voltage fluctuations and flicker in low-voltage supply systems. | Pass    |

<to be continued>

Page 2 of 2 Report No. ISL-12HE227CE

We, GeoVision Inc, hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

GeoVision Inc

Date: August 7, 2012

# **CE TEST REPORT**

## of EN55022 / CISPR 22 / AS/NZS CISPR 22 Class A EN55024 / CISPR 24 / IMMUNITY EN61000-3-2 / EN61000-3-3

Product : Video Server

Model(s): **GV-VS14** 

Brand Name: GeoVision

Applicant: GeoVision Inc

Address: 9F., No. 246, Sec. 1, Neihu Rd., Neihu District, Taipei City 114, Taiwan

Test Performed by:

### **International Standards Laboratory**

<Hsi-Chih LAB> \*Site Registration No. BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178 FCC: TW1067; IC: IC4067A-1; NEMKO: ELA 113A VCCI: <Conduction01>C-354, T-1749, <OATS01>R-341, <Chamber01>G-443 \*Address: No. 65, Gu Dai Keng St. Hsichih District, New Taipei City 22179, Taiwan \*Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: ISL-12HE227CE Issue Date : August 7, 2012

This report totally contains 54 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.



### **Contents of Report**

| 1.  | General                                         | 1    |
|-----|-------------------------------------------------|------|
| 1.1 | Certification of Accuracy of Test Data          | 1    |
| 1.2 | Test Standards                                  | 2    |
| 1.3 | Description of EUT                              |      |
| 1.4 | Description of Support Equipment                | 4    |
| 1.5 | Software for Controlling Support Unit           |      |
| 1.6 | I/O Cable Condition of EUT and Support Units    |      |
| 2.  | Power Main Port Conducted Emissions             | 7    |
| 2.1 | Test Setup and Procedure                        | 7    |
| 2.2 | Conduction Test Data: Configuration 1           | 8    |
| 2.3 | Test Setup Photo                                |      |
| 3.  | Telecommunication Port Conducted Emissions      | .12  |
| 3.1 | Test Setup and Procedure                        | .12  |
| 3.2 | Test Data: LAN10M                               | .13  |
| 3.3 | Test Data: LAN100M                              | .14  |
| 3.4 | Test Data: LANGIGA (Voltage)                    | . 15 |
| 3.5 | Test Setup Photo                                | .16  |
| 4.  | Radiated Disturbance Emissions                  | .17  |
| 4.1 | Test Setup and Procedure                        | .17  |
| 4.2 | Radiation Test Data: Configuration 1            | . 19 |
| 4.3 | Test Setup Photo                                | .23  |
| 5.  | Electrostatic discharge (ESD) immunity          | .25  |
| 5.1 | Test Specification                              | .25  |
| 5.2 | Test Setup                                      | .25  |
| 5.3 | Test Result                                     | .25  |
| 5.4 | Test Point                                      | .26  |
| 5.5 | Test Setup Photo                                | .27  |
| 6.  | Radio-Frequency, Electromagnetic Field immunity | .28  |
| 6.1 | Test Specification                              | .28  |
| 6.2 | Test Setup                                      | .28  |
| 6.3 | Test Result                                     | .28  |
| 6.4 | Test Setup Photo                                |      |
| 7.  | Electrical Fast transients/burst immunity       |      |
| 7.1 | Test Specification                              | . 30 |
| 7.2 | Test Setup                                      |      |
| 7.3 | Test Result                                     |      |
| 7.4 | Test Setup Photo                                |      |
| 8.  | Surge Immunity                                  |      |
| 8.1 | Test Specification                              |      |
| 8.2 | Test Setup                                      |      |
| 8.3 | Test Result                                     |      |
| 8.4 | Test Setup Photo                                |      |
| 9.  | Immunity to Conductive Disturbance              |      |
| 9.1 | Test Specification                              |      |
| 9.2 | Test Setup                                      |      |
| 9.3 | Test Result                                     |      |
| 9.4 | Test Setup Photo                                | .36  |



| 10. Po | wer Frequency Magnetic Field immunity                                   | 37 |
|--------|-------------------------------------------------------------------------|----|
| 10.1   | Test Specification                                                      | 37 |
| 10.2   | Test Setup                                                              | 37 |
| 10.3   | Test Result                                                             | 37 |
| 10.4   | Test Setup Photo                                                        | 38 |
| 11. Vo | Itage Dips, Short Interruption and Voltage Variation immunity           | 39 |
| 11.1   | Test Specification                                                      | 39 |
| 11.2   | Test Setup                                                              | 39 |
| 11.3   | Test Result                                                             | 39 |
| 11.4   | Test Setup Photo                                                        | 40 |
| 12. Ha | rmonics                                                                 | 41 |
| 12.1   | Test Specification                                                      | 41 |
| 12.2   | Test Setup                                                              | 41 |
| 12.3   | Test Result                                                             | 41 |
| 12.4   | Test Setup Photo                                                        | 42 |
| 13. Vo | Itage Fluctuations                                                      | 43 |
| 13.1   | Test Specification                                                      | 43 |
| 13.2   | Test Setup                                                              | 43 |
| 13.3   | Test Result                                                             | 43 |
| 13.4   | Test Setup Photo                                                        | 45 |
| 14. Ap | pendix                                                                  | 46 |
| 14.1   | Appendix A: Test Equipment                                              | 46 |
| 14.2   | Appendix B: Uncertainty of Measurement                                  |    |
| 14.3   | Appendix C: Photographs of EUT Please refer to the File of ISL-12HE227P | 51 |



# 1. General

### 1.1 Certification of Accuracy of Test Data

| Standards:              | Please refer to 1.2                            |
|-------------------------|------------------------------------------------|
| Equipment Tested:       | Video Server                                   |
| Model:                  | GV-VS14                                        |
| Brand Name:             | GeoVision                                      |
| Applicant:              | GeoVision Inc                                  |
| Sample received Date:   | July 26, 2012                                  |
| Final test Date:        | EMI:refer to the date of test data             |
|                         | EMS: August 3, 2012                            |
| Test Site:              | International Standards Laboratory             |
|                         | OATS 01; Chamber 14; Conduction 01; Immunity01 |
| Test Distance:          | 10M; 3M (above1GHz) (EMI test)                 |
| Temperature:            | refer to each site test data                   |
| Humidity:               | refer to each site test data                   |
| Input power:            | Conduction input power: AC 230 V / 50 Hz       |
|                         | Radiation input power: AC 230 V / 50 Hz        |
|                         | Immunity input power: AC 230 V / 50 Hz         |
| Test Result:            | PASS                                           |
| <b>Report Engineer:</b> | Maggy Han                                      |
| Test Engineer:          | <u>Louis Yu</u>                                |
|                         | Louis Yu                                       |

Approved By:

Jim Chu

Jim Chu / Director



### 1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory in accordance with the following

EN 55022:2010, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009: Class A: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

| Standard                                                                 | Description                                                | Results | Criteria |
|--------------------------------------------------------------------------|------------------------------------------------------------|---------|----------|
| EN 61000-4-2:2009<br>IEC 61000-4-2:2008                                  | Electrostatic Discharge                                    | Pass    | В        |
| EN 61000-4-3:2006+A1:2008 +A2:2010<br>IEC 61000-4-3:2006+A1:2007+A2:2010 | Radio-Frequency, Electromagnetic Field                     | Pass    | А        |
| EN 61000-4-4: 2004 +A1:2010<br>IEC 61000-4-4: 2004 +A1:2010              | Electrical Fast Transient/Burst                            | Pass    | В        |
| EN 61000-4-5: 2006<br>IEC 61000-4-5: 2005                                | Surge                                                      | Pass    | В        |
| EN 61000-4-6:2009<br>IEC 61000-4-6:2008                                  | Conductive Disturbance                                     | Pass    | А        |
| EN 61000-4-8:2010<br>IEC 61000-4-8:2009                                  | Power Frequency Magnetic Field                             | Pass    | А        |
| EN 61000-4-11: 2004<br>IEC 61000-4-11: 2004                              | Voltage Dips / Short Interruption<br>and Voltage Variation |         |          |
|                                                                          | >95% in 0.5 period                                         | Pass    | В        |
|                                                                          | 30% in 25 period                                           | Pass    | С        |
|                                                                          | >95% in 250 period                                         | Pass    | С        |

| Standard                                                                      | Description                                                                | Results |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|
| EN 61000-3-2: 2006 +A1:2009 +A2:2009<br>IEC 61000-3-2: 2005 +A1:2008 +A2:2009 | Limits for harmonics current emissions                                     | Pass    |
| EN 61000-3-3: 2008<br>IEC 61000-3-3: 2008                                     | Limits for voltage fluctuations and flicker in low-voltage supply systems. | Pass    |



### **1.3 Description of EUT**

# EUT

| Product Name                | Video Server                      |
|-----------------------------|-----------------------------------|
| Condition                   | Pre-Production                    |
| Model Number(s)             | GV-VS14                           |
| Serial Number               | N/A                               |
| Power Supply                | DVE(Model: DSA-42D-12 1 120350)   |
|                             | AC input: 100-240V ~ 50/60Hz 1.2A |
|                             | DC output: 12V, 3.5A              |
|                             |                                   |
| Motherboard                 | Model: GV-VS14 V1.00              |
| USB 2.0 Port                | two 4-pins                        |
| I/O Terminal Port           | one 16-pins                       |
| RJ45 Port(PoE)              | one 8-pins (10/100/1000M bps)     |
| BNC-In Port                 | four                              |
| Audio Out Port              | one                               |
| Audio In Port               | two                               |
| 1 TO 2 Audio Data Cable     | two, Non-shielded, Detachable     |
| DC-In Port                  | one                               |
| DC-Out Port                 | one                               |
| 1 TO 4 DC Power Cable       | one, Shielded, Detachable         |
| Maximum Operating Frequency | 810MHz                            |

All types of EUT have been tested. We present the worst case test data (Configurations: 1) in the report. The test configurations are listed below:

### Configurations

| Configurations | Power Supply                    |
|----------------|---------------------------------|
| 1              | DVE(Model: DSA-42D-12 1 120350) |
| 2              | RJ45 Port(PoE)                  |

### EMI Noise Source

| Motherboard Crystal | 25MHz (X1), 12MHz (Y1), 32.768KHz (Y4), 54MHz (OSC2) |
|---------------------|------------------------------------------------------|
|                     |                                                      |

#### EMI Solution

Added one core on the Power supply cable



### **1.4 Description of Support Equipment**

| Unit                                  | Model<br>Serial No.               | Brand     | Power Cord                     | FCC ID  |
|---------------------------------------|-----------------------------------|-----------|--------------------------------|---------|
| USB2.0<br>External HDD<br>Enclosure*2 | RD1000<br>S/N: NA                 | DELL      | Non-shielded,<br>Detachable    | FCC DOC |
| Decoder                               | AD-300<br>S/N: AD30000021115-0400 | Britz     | Non-shielded,<br>Detachable    | FCC DOC |
| Radio Cassette<br>Player              | RQ-L11                            | Panasonic | Non-shielded,<br>Detachable    | FCC DOC |
| DVD Player                            | DVD-NS575P                        | SONY      | Non-shielded,<br>Un-detachable | FCC DOC |
| Notebook<br>Personal<br>Computer      | Latitude D400<br>S/N: N/A         | DELL      | Non-shielded,<br>Detachable    | FCC DOC |
| 1 to 4 BNC<br>Adapter                 | N/A                               | N/A       | N/A                            | N/A     |
| Ethernet PoE<br>Switch                | FSD-804PS<br>S/N:A310126000161    | PLANET    | Non-shielded,<br>Detachable    | FCC DOC |



### **1.5** Software for Controlling Support Unit

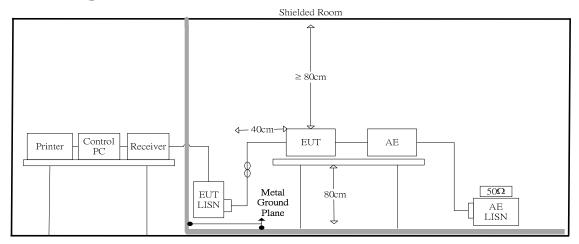
Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Receive and transmit package of EUT to the Ethernet PoE Switch HUB through RJ45 port.
- B. Used Tfgen.exe or ping.exe to send signal to EUT RJ45 port through Notebook RJ45 Port.
- C. Used iexplore.exe or Remote Viewlog.exe to R/W USB2.0 External HDD Enclosure through EUT USB2.0 Port.
- D. Send Video signal from DVD Player to EUT through 1 to 4 BNC Adapter
- E. Send audio signal to the Decoder.
- F. Receive audio signal from Radio Cassette Player through EUT Audio In port.
- G. Receive audio signal from DVD Player through EUT Audio In port.
- H. Repeat the above steps.

|                                  | Filename           | Issued Date |
|----------------------------------|--------------------|-------------|
| RJ45                             | Ping.exe           | 05/05/1999  |
| RJ45                             | Tfgen.exe          | 06/23/1999  |
| USB2.0 External HDD<br>Enclosure | iexplore.exe       | 04/30/2012  |
| USB2.0 External HDD<br>Enclosure | Remote Viewlog.exe | 01/16/2012  |



### 1.6 I/O Cable Condition of EUT and Support Units


| Description            | Path                                                                  | Cable Length                   | Cable Type               | Connector Type              |
|------------------------|-----------------------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|
| AC Power Cord          | 110V (~240V) to<br>EUT SPS                                            | 1.8M                           | Non-shielded, Detachable | Plastic Head                |
| BNC Data Cable<br>*4   | EUT BNC Port to<br>1 to 4 BNC<br>Adapter                              | 1 <b>M</b>                     | Shielded, Detachable     | Metal Head                  |
| AV Data Cable          | DVD Player AV<br>Port to1 to 4 BNC<br>Adapter                         | 1.5M                           | Non-shielded, Detachable | Metal Head                  |
| Audio Data Cable       | EUT Audio Out<br>Port to Decoder                                      | 1.5M                           | Non-shielded, Detachable | Metal Head                  |
| Audio Data Cable       | EUT Audio In<br>Port to DVD<br>Player Audio Port                      | 1.5M                           | Non-shielded, Detachable | Metal Head                  |
| Audio Data Cable       | EUT Audio-In                                                          |                                | Non-shielded, Detachable | Metal Head                  |
| USB2.0 Data<br>Cable*2 | USB2.0 External<br>HDD Enclosure<br>USB2.0 Port to<br>EUT USB2.0 Port | ternal<br>osure 2M (With Core) |                          | Metal Head                  |
| RJ45 Data Cable        | EUT RJ-45 Port to<br>PoE Switch HUB<br>RJ45 Port                      | 10M                            | Non-shielded, Detachable | RJ-45, with<br>Plastic Head |
| RJ45 Data Cable        | Notebook RJ45<br>Port to PoE<br>Switch HUB RJ45<br>Port               | 1.5M Non-shielded Detachable   |                          | RJ-45, with<br>Plastic Head |
| DC Power Cable         | EUT DC-Out Port<br>to dummy                                           | 0.24M                          | Shielded, Detachable     | Metal Head                  |



# 2. Power Main Port Conducted Emissions

### 2.1 Test Setup and Procedure

### 2.1.1 Test Setup

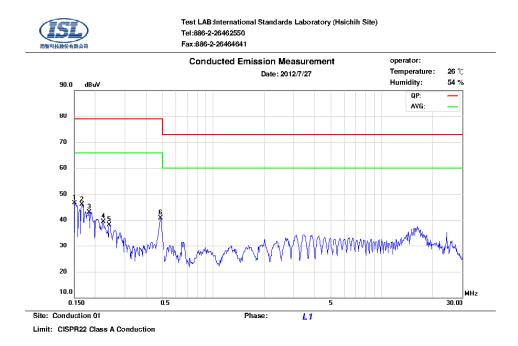


### 2.1.2 Test Procedure

The measurements are performed in a  $3.5m \ge 3.4m \ge 2.5m$  shielded room, which referred as Conduction 01 test site, or a  $3m \ge 3m \ge 2.3m$  test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m  $\ge 1.5m$  table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

### 2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

| Frequency Range:             | 150KHz30MHz               |
|------------------------------|---------------------------|
| Detector Function:           | Quasi-Peak / Average Mode |
| <b>Resolution Bandwidth:</b> | 9KHz                      |

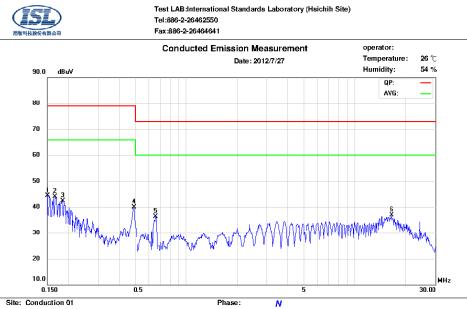


### 2.2 Conduction Test Data: Configuration 1 Table 2.2.1 Power Line Conducted Emissions (Hot)



| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|---------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.1507           | 0.29               | 0.01                | 43.75                  | 79.00               | -35.25             | 29.89                   | 66.00                | -36.11              |      |
| 2   | 0.1678           | 0.29               | 0.01                | 42.57                  | 79.00               | -36.43             | 29.40                   | 66.00                | -36.60              |      |
| 3   | 0.1832           | 0.28               | 0.01                | 33.78                  | 79.00               | -45.22             | 26.52                   | 66.00                | -39.48              |      |
| 4   | 0.2217           | 0.28               | 0.01                | 34.74                  | 79.00               | -44.26             | 22.72                   | 66.00                | -43.28              |      |
| 5   | 0.2420           | 0.28               | 0.02                | 34.33                  | 79.00               | -44.67             | 23.65                   | 66.00                | -42.35              |      |
| 6   | 0.4853           | 0.29               | 0.04                | 39.43                  | 79.00               | -39.57             | 37.61                   | 66.00                | -28.39              |      |

Note:


Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.





### Table 2.2.2 Power Line Conducted Emissions (Neutral)

Limit: CISPR22 Class A Conduction

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>d B | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|----------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.1500           | 0.13               | 0.01                 | 42.78                  | 79.00               | -36.22             | 31.49                   | 66.00                | -34.51              |      |
| 2   | 0.1675           | 0.13               | 0.01                 | 40.30                  | 79.00               | -38.70             | 29.82                   | 66.00                | -36.18              |      |
| 3   | 0.1843           | 0.13               | 0.01                 | 37.38                  | 79.00               | -41.62             | 29.40                   | 66.00                | -36.60              |      |
| 4   | 0.4853           | 0.14               | 0.04                 | 38.74                  | 79.00               | -40.26             | 37.14                   | 66.00                | -28.86              |      |
| 5   | 0.6620           | 0.14               | 0.05                 | 30.38                  | 73.00               | -42.62             | 13.30                   | 60.00                | -46.70              |      |
| 6   | 16.4250          | 0.80               | 0.25                 | 29.85                  | 73.00               | -43.15             | 24.17                   | 60.00                | -35.83              |      |

Note:

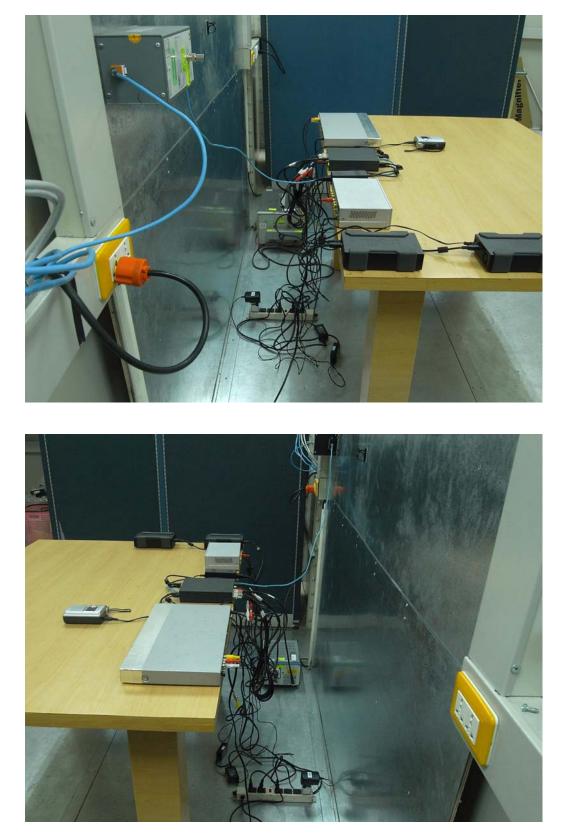
Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.



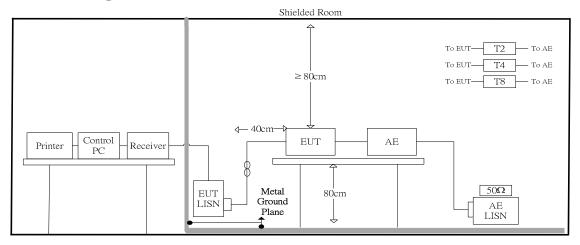

### 2.3 Test Setup Photo

Front View





Back View






# 3. Telecommunication Port Conducted Emissions

### **3.1 Test Setup and Procedure**

### 3.1.1 Test Setup

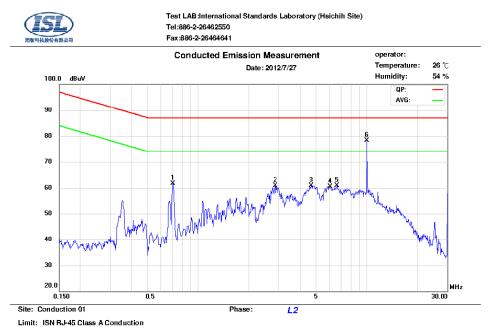


### 3.1.2 Test Procedure

The measurements are performed in a  $3.5m \ge 3.4m \ge 2.5m$  shielded room, which referred as Conduction 01 test site, or a  $3m \ge 3m \ge 2.3m$  test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m  $\ge 1.5m$  table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement.

Power to the EUT was provided through the LISN which has the Impedance (50 Ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISN was filtered to eliminate ambient signal interference and this filter was bonded to ground. Peripheral equipment to provide a functional system (support equipment) for EUT testing was powered through a ganged, metal power outlet box bonded to the ground. AC input power for the auxiliary power outlets was obtained from the same filtered source that provides input power to the LISN.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

### 3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

| Frequency Range:             | 150KHz30MHz               |
|------------------------------|---------------------------|
| Detector Function:           | Quasi-Peak / Average Mode |
| <b>Resolution Bandwidth:</b> | 9KHz                      |

# 期智科技股份有限公司 International Standards Laboratory

#### 3.2 Test Data: LAN--10M

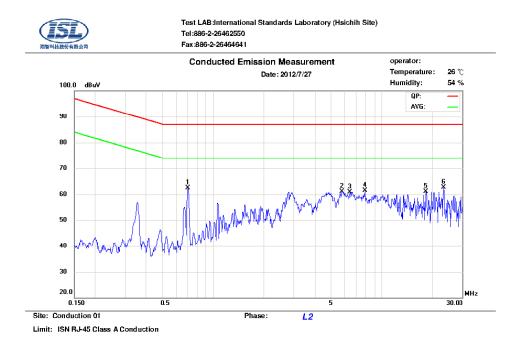


### Table 3.2.1 Telecommunication Port Conducted Emission

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>d B | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|----------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.7070           | 9.99               | 0.05                 | 58.07                  | 87.00               | -28.93             | 54.33                   | 74.00                | -19.67              |      |
| 2   | 2.8445           | 9.98               | 0.13                 | 57.50                  | 87.00               | -29.50             | 45.70                   | 74.00                | -28.30              |      |
| 3   | 4.6310           | 9.97               | 0.17                 | 57.80                  | 87.00               | -29.20             | 47.69                   | 74.00                | -26.31              |      |
| 4   | 6.0500           | 9.97               | 0.18                 | 54.54                  | 87.00               | -32.46             | 46.06                   | 74.00                | -27.94              |      |
| 5   | 6.6500           | 9.97               | 0.19                 | 55.99                  | 87.00               | -31.01             | 47.20                   | 74.00                | -26.80              |      |
| 6   | 10.0000          | 9.98               | 0.22                 | 76.76                  | 87.00               | -10.24             | 60.97                   | 74.00                | -13.03              |      |

Note :

Margin = Corrected Amplitude - Limit


Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.



#### 3.3 Test Data: LAN--100M

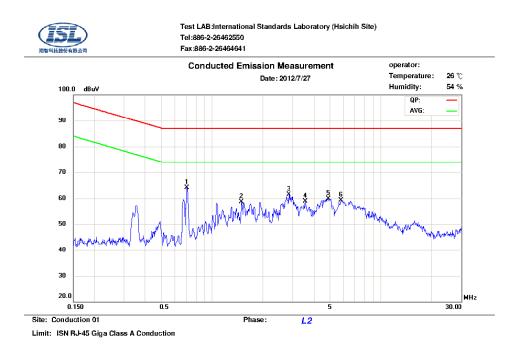


### Table 3.3.1 Telecommunication Port Conducted Emission

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|---------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.7070           | 9.99               | 0.05                | 58.55                  | 87.00               | -28.45             | 54.36                   | 74.00                | -19.64              |      |
| 2   | 5.8250           | 9.97               | 0.18                | 56.16                  | 87.00               | -30.84             | 47.15                   | 74.00                | -26.85              |      |
| 3   | 6.4750           | 9.97               | 0.18                | 54.81                  | 87.00               | -32.19             | 46.05                   | 74.00                | -27.95              |      |
| 4   | 7.9000           | 9.98               | 0.20                | 54.07                  | 87.00               | -32.93             | 44.96                   | 74.00                | -29.04              |      |
| 5   | 18.2500          | 9.98               | 0.27                | 47.07                  | 87.00               | -39.93             | 44.62                   | 74.00                | -29.38              |      |
| 6   | 23.1250          | 9.99               | 0.30                | 59.51                  | 87.00               | -27.49             | 56.38                   | 74.00                | -17.62              |      |

Note :

Margin = Corrected Amplitude - Limit


Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.



### 3.4 Test Data: LAN--GIGA (Voltage)



### Table 3.4.1 Telecommunication Port Conducted Emission

| No. | Frequency<br>MHz | LISN<br>Loss<br>dB | Cable<br>Loss<br>dB | QP<br>Correct.<br>dBuV | QP<br>Limit<br>dBuV | QP<br>Margin<br>dB | AVG<br>Correct.<br>dBuV | AVG<br>Limit<br>dBuV | AVG<br>Margin<br>dB | Note |
|-----|------------------|--------------------|---------------------|------------------------|---------------------|--------------------|-------------------------|----------------------|---------------------|------|
| 1   | 0.7070           | 10.03              | 0.05                | 58.51                  | 87.00               | -28.49             | 53.63                   | 74.00                | -20.37              |      |
| 2   | 1.4855           | 10.02              | 0.09                | 53.20                  | 87.00               | -33.80             | 43.98                   | 74.00                | -30.02              |      |
| 3   | 2.8400           | 10.04              | 0.13                | 56.84                  | 87.00               | -30.16             | 46.14                   | 74.00                | -27.86              |      |
| 4   | 3.5555           | 10.05              | 0.15                | 53.58                  | 87.00               | -33.42             | 43.86                   | 74.00                | -30.14              |      |
| 5   | 4.8695           | 10.07              | 0.17                | 55.95                  | 87.00               | -31.05             | 46.83                   | 74.00                | -27.17              |      |
| 6   | 5.8250           | 10.09              | 0.18                | 54.32                  | 87.00               | -32.68             | 46.10                   | 74.00                | -27.90              |      |

Note :

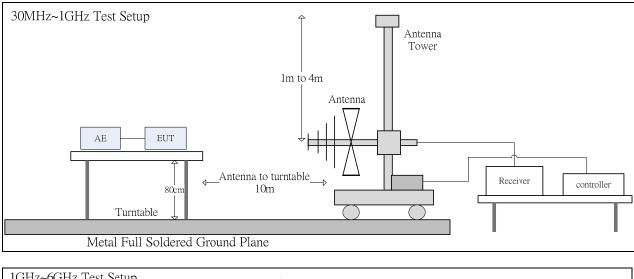
Margin = Corrected Amplitude - Limit

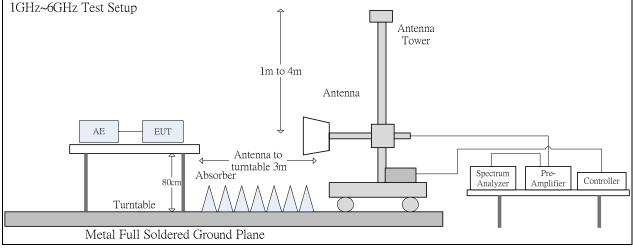
Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

### 3.5 Test Setup Photo


Refer to the Setup Photos for Power Main Port Conducted Emissions




# 4. Radiated Disturbance Emissions

### 4.1 Test Setup and Procedure

### 4.1.1 Test Setup



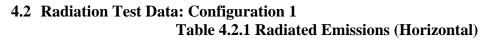


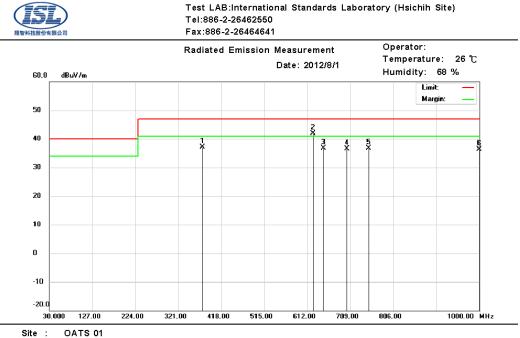
### 4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.




At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.


The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

### **4.1.3** Spectrum Analyzer Configuration (for the frequencies tested)

| Frequency Range:      | 30MHz1000MHz         |
|-----------------------|----------------------|
| Detector Function:    | Quasi-Peak Mode      |
| Resolution Bandwidth: | 120KHz               |
| Frequency Range:      | Above 1 GHz to 6 GHz |
| Detector Function:    | Peak/Average Mode    |
| Resolution Bandwidth: | 1MHz                 |



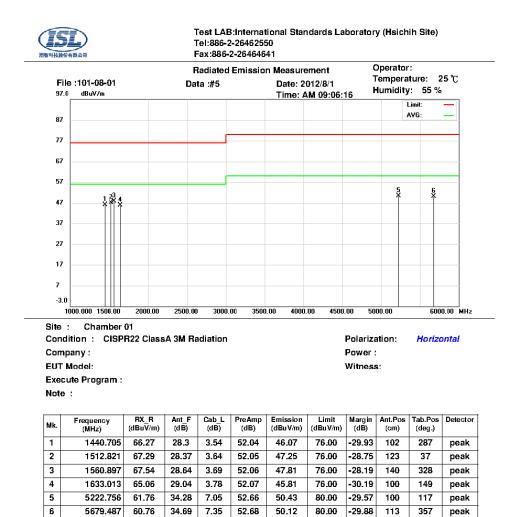




Condition : CISPR22 ClassA 10M Radiation

Polarization: Horizontal

| Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV/m) | Ant_F<br>(dB) | Cab_L<br>(dB) | PreAmp<br>(dB) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|-----|--------------------|------------------|---------------|---------------|----------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| 1   | 374.4900           | 20.26            | 14.94         | 1.98          | 0.00           | 37.18                | 47.00             | -9.82          | 100             | 96                | QP       |
| 2   | 624.8800           | 20.20            | 19.15         | 2.6           | 0.00           | 41.95                | 47.00             | -5.05          | 128             | 144               | QP       |
| 3   | 648.1300           | 14.35            | 19.66         | 2.66          | 0.00           | 36.67                | 47.00             | -10.33         | 113             | 267               | QP       |
| 4   | 701.3100           | 13.47            | 20.21         | 2.77          | 0.00           | 36.45                | 47.00             | -10.55         | 310             | 321               | QP       |
| 5   | 749.9300           | 13.28            | 20.6          | 2.88          | 0.00           | 36.76                | 47.00             | -10.24         | 264             | 228               | QP       |
| 6   | 1000.0000          | 9.62             | 23.3          | 3.36          | 0.00           | 36.28                | 47.00             | -10.72         | 146             | 111               | QP       |


\* Note:

Margin = Corrected Amplitude – Limit

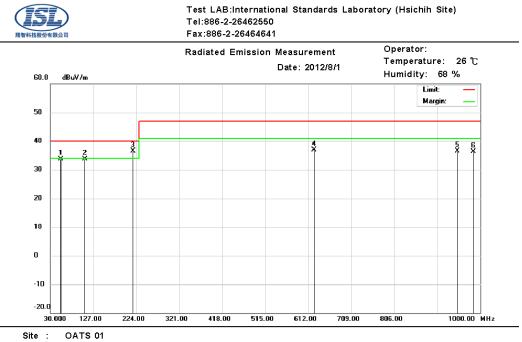
Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.





\*:Maximum data x:Over limit !:over margin


\* Note:

Margin = Corrected Amplitude – Limit Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

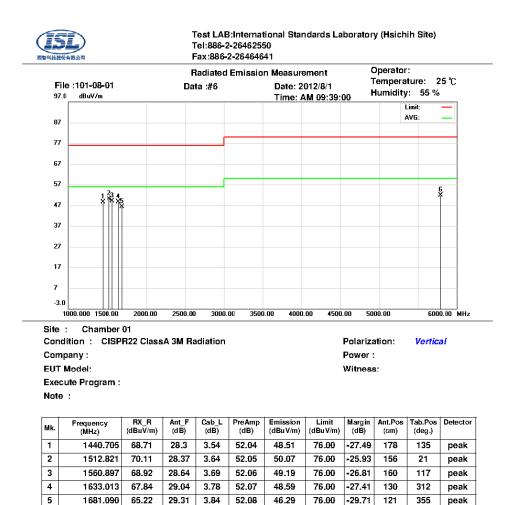


### Table 4.2.2 Radiated Emissions (Vertical)



Condition : CISPR22 ClassA 10M Radiation Polarization: Vertical

| Mk. | Frequency<br>(MHz) | RX_R<br>(dBuV/m) | Ant_F<br>(dB) | Cab_L<br>(dB) | PreAmp<br>(dB) | Emission<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Ant.Pos<br>(cm) | Tab.Pos<br>(deg.) | Detector |
|-----|--------------------|------------------|---------------|---------------|----------------|----------------------|-------------------|----------------|-----------------|-------------------|----------|
| 1   | 53.4100            | 25.12            | 7.83          | 0.75          | 0.00           | 33.70                | 40.00             | -6.30          | 100             | 199               | QP       |
| 2   | 107.9400           | 20.06            | 12.59         | 1.03          | 0.00           | 33.68                | 40.00             | -6.32          | 106             | 327               | QP       |
| 3   | 215.5800           | 24.34            | 10.61         | 1.47          | 0.00           | 36.42                | 40.00             | -3.58          | 307             | 144               | QP       |
| 4   | 624.7600           | 15.20            | 19.14         | 2.6           | 0.00           | 36.94                | 47.00             | -10.06         | 175             | 211               | QP       |
| 5   | 947.8900           | 10.47            | 22.78         | 3.24          | 0.00           | 36.49                | 47.00             | -10.51         | 222             | 213               | QP       |
| 6   | 984.2600           | 9.93             | 23.14         | 3.32          | 0.00           | 36.39                | 47.00             | -10.61         | 134             | 38                | QP       |


\* Note:

Margin = Corrected Amplitude – Limit

Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.





\*:Maximum data x:Over limit !:over margin

\* Note:

6

5783.654

62.19

34.85

7.42

52.69

51.77

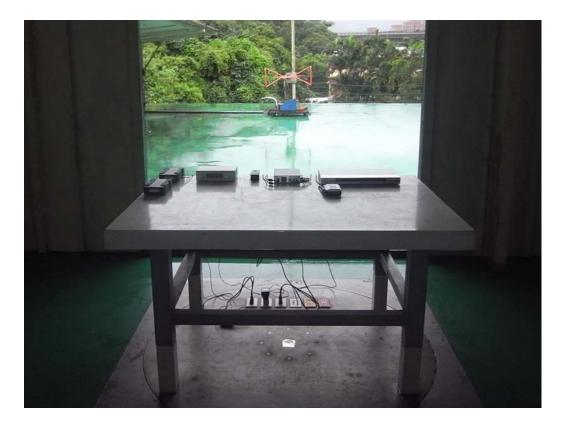
80.00

-28.23

109

289

peak


Margin = Corrected Amplitude – Limit Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

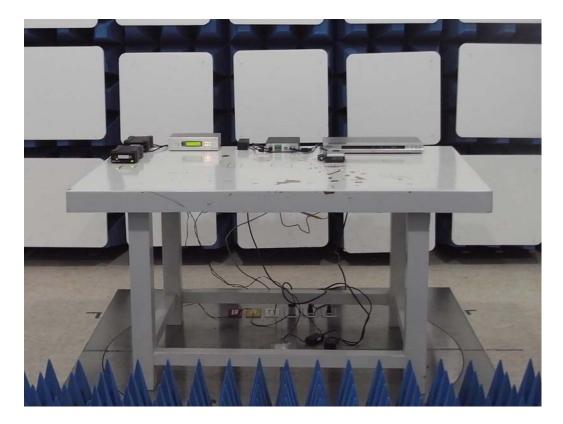


### 4.3 Test Setup Photo

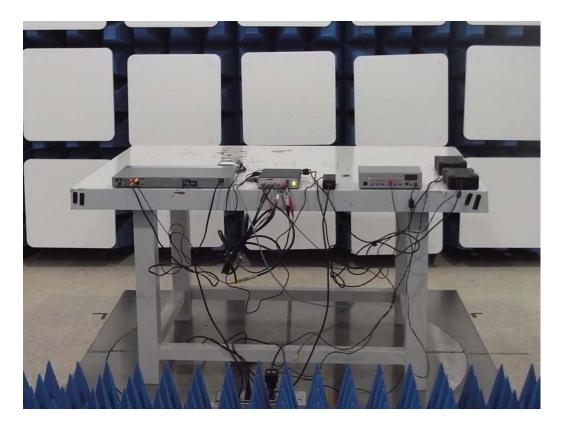
Front View (30MHz~1GHz)



Back View (30MHz~1GHz)




**International Standards Laboratory** 


**Report Number: ISL-12HE227CE** 



### Front View (above 1GHz)



Back View (above 1GHz)

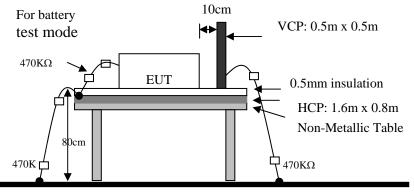




# 5. Electrostatic discharge (ESD) immunity

| Port:           | Enclosure                        |
|-----------------|----------------------------------|
| Basic Standard: | EN 61000-4-2/ IEC EN61000-4-2    |
|                 | (details referred to Sec 1.2)    |
| Test Level:     | Air +/- 2 kV, +/- 4 kV, +/- 8 kV |
|                 | Contact +/- 4 kV                 |
| Criteria:       | В                                |
| Test Procedure  | refer to ISL QA -T4-E-S7         |
| Temperature:    | 24 °C                            |
| Humidity:       | 56%                              |

### 5.1 Test Specification


### **Selected Test Point**

- Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air discharges were applied to each selected points.
- Contact: Total 200 discharges minimum were to the selected contact points.

Indirect Contact Points: 25 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

### 5.2 Test Setup

EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one  $470 \text{K}\Omega$  resister at two rare ends is connected from metallic part of EUT and screwed to HCP.



Ground reference Plane


### 5.3 Test Result

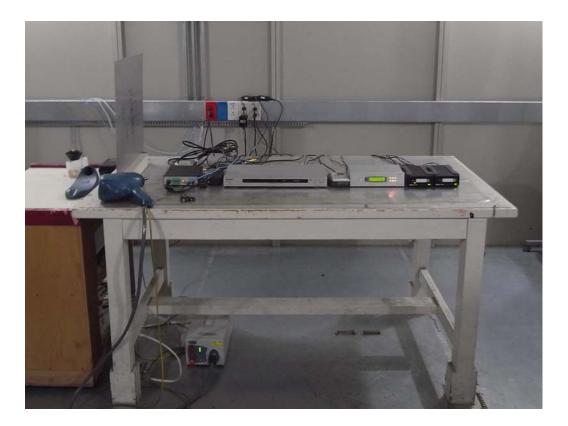
Performance of EUT complies with the given specification.



### 5.4 Test Point

Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.






International Standards Laboratory

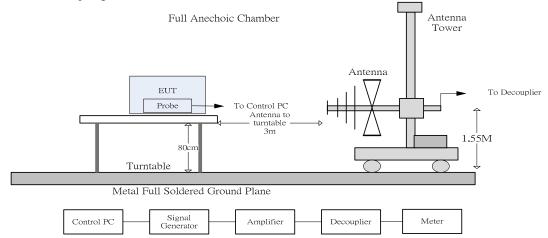
**Report Number: ISL-12HE227CE** 



### 5.5 Test Setup Photo

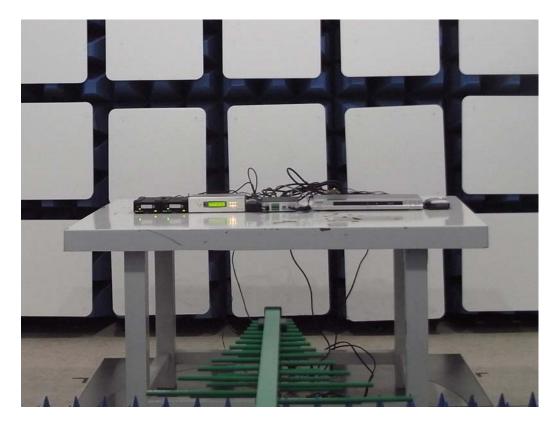





# 6. Radio-Frequency, Electromagnetic Field immunity

| our rest specification |                                                                                        |
|------------------------|----------------------------------------------------------------------------------------|
| Port:                  | Enclosure                                                                              |
| Basic Standard:        | EN 61000-4-3/ IEC EN61000-4-3                                                          |
|                        | (details referred to Sec 1.2)                                                          |
| Test Level:            | 3 V/m                                                                                  |
| Modulation:            | AM 1KHz 80%                                                                            |
| Frequency range:       | 80 MHz~1 GHz                                                                           |
| Frequency Step:        | 1% of last step frequency                                                              |
| Dwell time:            | 3s                                                                                     |
| Polarization:          | Vertical and Horizontal                                                                |
| EUT Azimuth Angle      | $\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$ |
| Criteria:              | A                                                                                      |
| Test Procedure         | refer to ISL QA -T4-E-S8                                                               |
| Temperature:           | 24°C                                                                                   |
| Humidity:              | 58%                                                                                    |

#### 6.1 Test Specification


#### 6.2 Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.



#### 6.3 Test Result





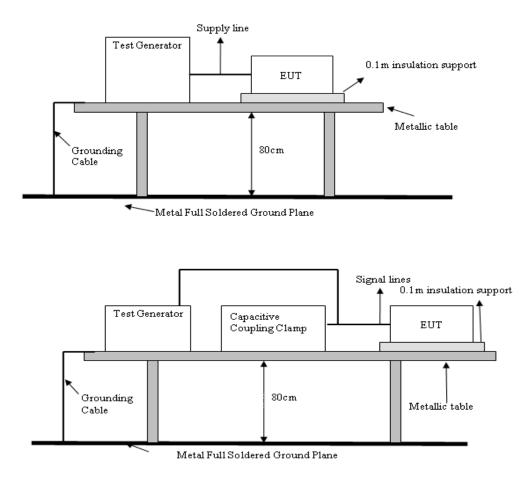


# 7. Electrical Fast transients/burst immunity

#### 7.1 Test Specification

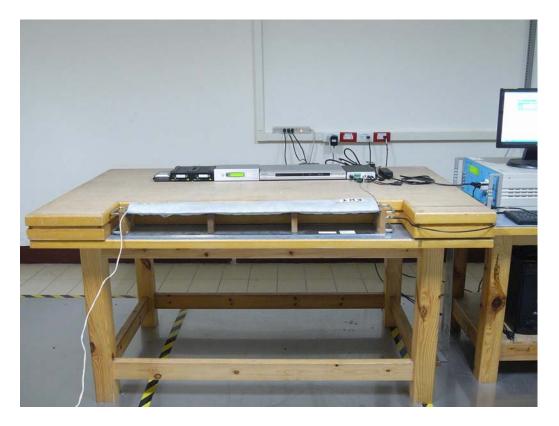
| Port:                 | AC mains                      |
|-----------------------|-------------------------------|
| Basic Standard:       | EN 61000-4-4/ IEC EN61000-4-4 |
|                       | (details referred to Sec 1.2) |
| Test Level:           | AC Power Port: +/- 1 kV       |
| Rise Time:            | 5ns                           |
| Hold Time:            | 50ns                          |
| Repetition Frequency: | 5KHz                          |
| Criteria:             | В                             |
| Test Procedure        | refer to ISL QA -T4-E-S9      |
| Temperature:          | 24 °C                         |
| Humidity:             | 59%                           |

<u>Test Procedure</u> The E<u>UT was setup on a nonconductive table 0.1 m above a reference ground plane.</u>


| Test Points         | Polarity | Result | Comment |
|---------------------|----------|--------|---------|
| Line                | +        | N      | 60 sec  |
|                     | -        | Ν      | 60 sec  |
| Neutral             | +        | Ν      | 60 sec  |
|                     | -        | Ν      | 60 sec  |
| Ground              | +        | Ν      | 60 sec  |
|                     | -        | Ν      | 60 sec  |
| Line to             | +        | Ν      | 60 sec  |
| Neutral             | -        | Ν      | 60 sec  |
| Line to             | +        | Ν      | 60 sec  |
| Ground              | -        | Ν      | 60 sec  |
| Neutral to          | +        | Ν      | 60 sec  |
| Ground              | -        | Ν      | 60 sec  |
| Line to Neutral     | +        | Ν      | 60 sec  |
| to Ground           | _        | Ν      | 60 sec  |
| Capacitive coupling | +        | Ν      | 60 sec  |
| clamp               | _        | Ν      | 60 sec  |

Note: 'N' means normal, the EUT function is correct during the test.




#### 7.2 Test Setup

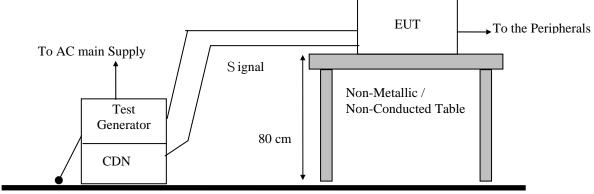
EUT is at least 50cm from the conductive structure.



#### 7.3 Test Result



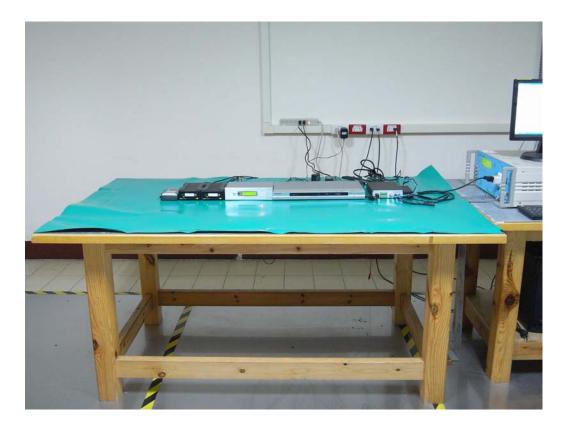





# 8. Surge Immunity

#### 8.1 Test Specification

| Port:            | AC mains                                                                               | Signal and telecommunication                                                                |  |  |  |
|------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|
|                  |                                                                                        | port-NA                                                                                     |  |  |  |
| Basic Standard:  | EN 61000-4-5/ IEC EN61000-4-5                                                          |                                                                                             |  |  |  |
|                  | (details referred to Sec 1.2)                                                          |                                                                                             |  |  |  |
| Test Level:      | Line to Line:                                                                          | Line to Earth:                                                                              |  |  |  |
|                  | +/- 0.5 kV, +/- 1 kV                                                                   | +/- 0.5 kV, +/- 1 kV, +/- 4 kV                                                              |  |  |  |
|                  | Line to Earth:                                                                         |                                                                                             |  |  |  |
|                  | +/- 0.5 kV, +/- 1 kV, +/- 2kV                                                          |                                                                                             |  |  |  |
| Rise Time:       | 1.2us                                                                                  | 10us                                                                                        |  |  |  |
| Hold Time:       | 50us                                                                                   | 700us                                                                                       |  |  |  |
| Repetition Rate: | 30 second                                                                              | 60 second                                                                                   |  |  |  |
| Angle:           | $\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$ | NA                                                                                          |  |  |  |
| Criteria:        | В                                                                                      | NA                                                                                          |  |  |  |
| Remarks:         |                                                                                        | Where the coupling network for the 10/700 us waveform affects the functioning of high speed |  |  |  |
|                  |                                                                                        | data ports, the test shall be carried out using a                                           |  |  |  |
|                  |                                                                                        | 1,2/50 (8/20) us waveform and appropriate coupling network.                                 |  |  |  |
| Test Procedure:  | refer to ISL QA -T4-E-S10                                                              |                                                                                             |  |  |  |
| Temperature:     | 24°C                                                                                   |                                                                                             |  |  |  |
| Humidity:        | 59%                                                                                    |                                                                                             |  |  |  |


#### 8.2 Test Setup

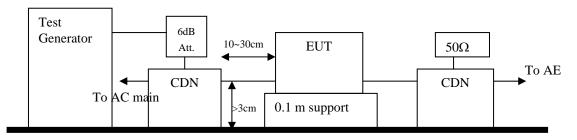


Metal Full Soldered Ground Plane

#### 8.3 Test Result



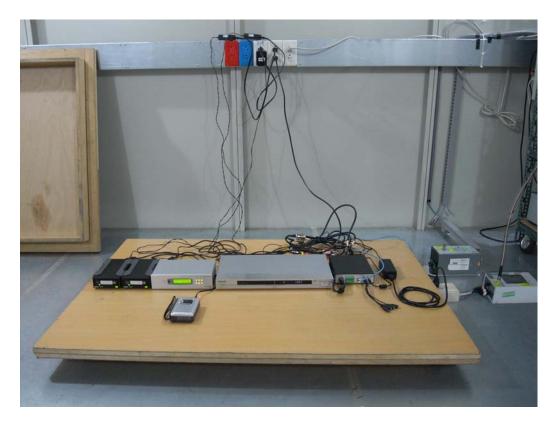





# 9. Immunity to Conductive Disturbance

| <b>7.1</b> Test specification |                                |
|-------------------------------|--------------------------------|
| Port:                         | AC mains                       |
| Basic Standard:               | EN 61000-4-6/ IEC EN61000-4-6  |
|                               | (details referred to Sec 1.2)  |
| Test Level:                   | 3 V                            |
| Modulation:                   | AM 1KHz 80%                    |
| Frequency range:              | 0.15 MHz - 80MHz               |
| Frequency Step:               | 1% of last Frequency           |
| Dwell time:                   | 3s                             |
| Criteria:                     | Α                              |
| CDN Type:                     | CDN M2+M3, CDN T2, CDN T4, CDN |
|                               | T8, EM Clamp                   |
| Test Procedure                | refer to ISL QA -T4-E-S11      |
| Temperature:                  | 24°C                           |
| Humidity:                     | 56%                            |

#### 9.1 Test Specification


#### 9.2 Test Setup

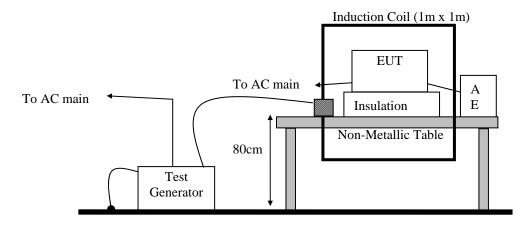


Reference Ground Plane

#### 9.3 Test Result








# 10. Power Frequency Magnetic Field immunity

#### **10.1 Test Specification**

| Port:           | Enclosure                     |
|-----------------|-------------------------------|
| Basic Standard: | EN 61000-4-8/ IEC EN61000-4-8 |
|                 | (details referred to Sec 1.2) |
| Test Level:     | 1A/m                          |
| Polarization:   | X, Y, Z                       |
| Criteria:       | А                             |
| Test Procedure  | refer to ISL QA -T4-E-S12     |
| Temperature:    | 24°C                          |
| Humidity:       | 59%                           |

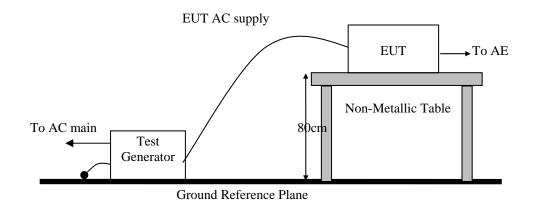
#### 10.2 Test Setup



#### 10.3 Test Result








# 11. Voltage Dips, Short Interruption and Voltage Variation immunity

| Port:           | AC mains                        |
|-----------------|---------------------------------|
| Basic Standard: | EN 61000-4-11/ IEC EN61000-4-11 |
|                 | (details referred to Sec 1.2)   |
| Test Level:     | >95% in 0.5 period              |
| Criteria:       | В                               |
| Test Level:     | 30% in 25 period                |
| Criteria:       | С                               |
| Test Level:     | >95% in 250 period              |
| Criteria:       | С                               |
| Phase:          | 0°; 180°                        |
| Test intervals: | 3 times with 10s each           |
| Test Procedure  | refer to ISL QA -T4-E-S13       |
| Temperature:    | 24°C                            |
| Humidity:       | 59%                             |

#### **11.1 Test Specification**

#### 11.2 Test Setup



#### 11.3 Test Result

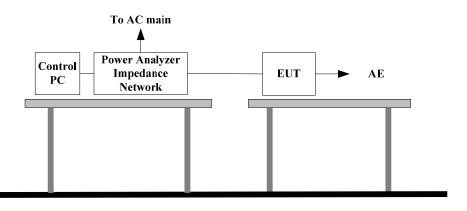






# 12. Harmonics

#### **12.1 Test Specification**


| Port:               | AC mains                      |
|---------------------|-------------------------------|
| Active Input Power: | <75W                          |
| Basic Standard:     | EN61000-3-2/IEC 61000-3-2     |
|                     | (details referred to Sec 1.2) |
| Test Duration:      | 2.5min                        |
| Class:              | А                             |
| Test Procedure      | refer to ISL QA -T4-E-S14     |
| Temperature:        | 25°C                          |
| Humidity:           | 60%                           |

#### **Test Procedure**

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.

Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.

#### 12.2 Test Setup



#### 12.3 Test Result

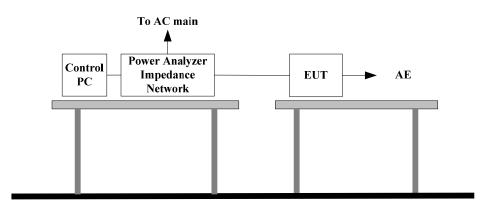
Active input power under 75W, no limit apply, declare compliance.







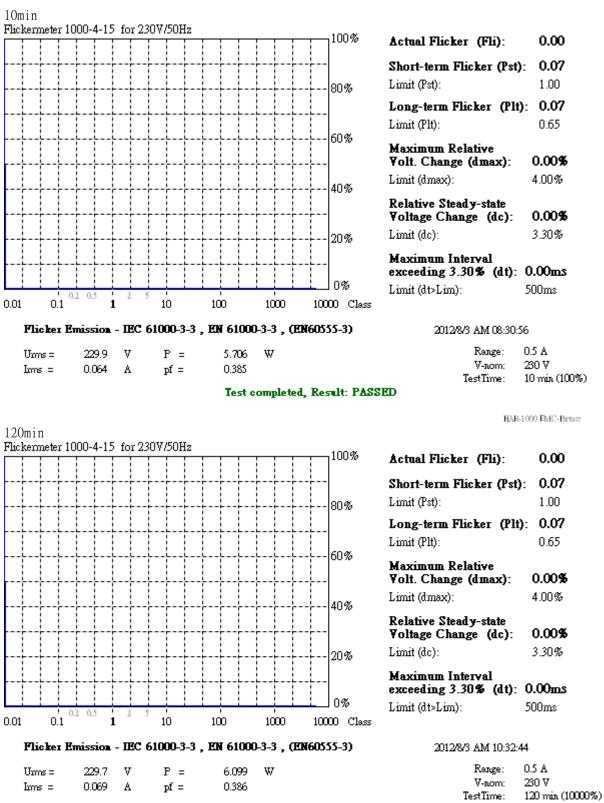
# 13. Voltage Fluctuations


#### **13.1 Test Specification**

| -                   |                               |  |
|---------------------|-------------------------------|--|
| Port:               | AC mains                      |  |
| Basic Standard:     | EN61000-3-3/IEC61000-3-3      |  |
|                     | (details referred to Sec 1.2) |  |
| Test Procedure      | refer to ISL QA -T4-E-S14     |  |
| Observation period: | For Pst 10min                 |  |
|                     | For Plt 2 hours               |  |
| Temperature:        | 25°C                          |  |
| Humidity:           | 60%                           |  |

#### **Test Procedure**

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.


#### 13.2 Test Setup



#### 13.3 Test Result



#### Test Data:



Test completed, Result: PASSED

HAR-1000 EMC-Partner



Refer to the Setup Photo for Harmonics



# 14. Appendix

### 14.1 Appendix A: Test Equipment

### 14.1.1 Test Equipment List

| Location   | Equipment Name      | Brand              | Model                  | S/N        | Last Cal.  | Next Cal.  |
|------------|---------------------|--------------------|------------------------|------------|------------|------------|
| CON01      |                     |                    |                        |            | Date       | Date       |
| Conduction | Coaxial Cable 1F-C1 | EMEC               | 5D Cable               | 1F-C1      | 10/25/2011 | 10/25/2012 |
| Conduction | LISN 02             | EMCO               | 3825/2                 | 1407       | 07/28/2012 | 07/28/2013 |
| Conduction | LISN 03             | R&S                | ESH3-Z5<br>831.5518.52 | 828874/010 | 07/28/2012 | 07/28/2013 |
| Conduction | ISN T2 03           | FCC                | FCC-TLISN-T<br>2-02    | 20618      | 07/28/2012 | 07/28/2013 |
| Conduction | ISN T4 05           | FCC                | FCC-TLISN-T<br>4-02    | 20619      | 07/28/2012 | 07/28/2013 |
| Conduction | ISN T8 03           | FCC                | FCC-TLINS-T<br>8-02    | 20620      | 07/28/2012 | 07/28/2013 |
| Conduction | EMI Receiver 15     | ROHDE &<br>SCHWARZ | ESCI                   | 101166     | 04/24/2012 | 04/24/2013 |

| Location<br>OATS01 | Equipment Name       | Brand              | Model     | S/N       | Last Cal.<br>Date | Next Cal.<br>Date |
|--------------------|----------------------|--------------------|-----------|-----------|-------------------|-------------------|
| Radiation          | BILOG Antenna 10     | Sumol<br>Sciences  | JB1       | A013004-1 | 07/18/2012        | 07/18/2013        |
| Radiation          | Coaxial Cable 3F-10M | EMCI               | CFD400-NL | ISL-R001  | 03/16/2012        | 03/16/2013        |
| Radiation          | EMI Receiver 13      | ROHDE &<br>SCHWARZ | ESCI      | 101015    | 02/22/2012        | 02/22/2013        |

| Location<br>Chmb14 | Equipment<br>Name                    | Brand           | Model                       | S/N                    | Last Cal.<br>Date | Next Cal.<br>Date |
|--------------------|--------------------------------------|-----------------|-----------------------------|------------------------|-------------------|-------------------|
| Rad. Above<br>1GHz | Spectrum Analyzer<br>21 (1G~26.5GHz) | Agilent         | N9010A                      | MY49060537             | 07/18/2012        | 07/17/2013        |
| Rad. Above<br>1GHz | Spectrum Analyzer 22                 | R&S             | FSU43                       | 100143                 | 04/26/2012        | 04/26/2013        |
| Rad. Above<br>1GHz | Horn Antenna 06<br>(1G~18G)          | ETS             | 3117                        | 00066665               | 09/21/2011        | 09/20/2012        |
| Rad. Above<br>1GHz | Horn Antenna 04<br>(18G~26G)         | Com-Power       | AH-826                      | 081-001                | 05/04/2011        | 05/04/2013        |
| Rad. Above<br>1GHz | Horn Antenna 05<br>(26G~40G)         | Com-Power       | AH-640                      | 100A                   | 01/11/2011        | 01/10/2013        |
| Rad. Above<br>1GHz | SUCOFLEX<br>1GHz~18GHz cable         | HUBER<br>SUHNER | Sucoflex 106                | 67618/6 and<br>67619/6 | 02/10/2012        | 02/10/2013        |
| Rad. Above<br>1GHz | Preamplifier 13                      | MITEQ           | JS44-0010180<br>0-25-10P-44 | 1329256                | 07/19/2012        | 07/18/2013        |
| Rad. Above<br>1GHz | SUCOFLEX<br>1GHz~40GHz cable         | HUBER<br>SUHNER | Sucoflex 102                | 27963/2&374<br>21/2    | 09/21/2011        | 09/20/2012        |



| Location                | Equipment Name                   | Brand                 | Model                  | S/N               | Last Cal.<br>Date | Next Cal.<br>Date |
|-------------------------|----------------------------------|-----------------------|------------------------|-------------------|-------------------|-------------------|
| EN61K-3-2/3             | DC Burn-In Load 02               | D-RAM                 | DBS-2100               | 2100-910027       | N/A               | N/A               |
| EN61K-3-2/3             | Harmonic/Flicker Test            | EMC Partner           | HARMONICS              | 178               | 03/23/2012        | 03/23/2013        |
|                         | System 03                        |                       | -1000                  |                   |                   |                   |
| EN61K-4-,4,5,           | TRANSIENT 2000 01                | EMC Partner           |                        | 950               | 12/01/2011        | 12/01/2012        |
| 8,11                    |                                  |                       | 2000                   |                   |                   |                   |
| EN61K-4-2               | ESD GUN 04                       | Schaffner             | NSG 438                | 489               | 03/28/2012        | 03/28/2013        |
| EN61K-4-3               | BILOG Antenna 06                 | Schaffner             | CBL6112B               | 2754              | N/A               | N/A               |
| EN61K-4-3               | Amplifier 80Mz~1GHz<br>250W      | AR                    | 250W1000A              | 312494            | N/A               | N/A               |
| EN61K-4-3               | Amplifier<br>800MHz~3.0GHz 60W   | AR                    | 60S1G3                 | 312762            | N/A               | N/A               |
| EN61K-4-3               | Broadband coupler<br>10K~220Mhz  | Amplifier<br>Research | DC2500                 | 19810             | N/A               | N/A               |
| EN61K-4-3               | Broadband Coupler<br>80M~1GHz    | Amplifier<br>Research | DC6180                 | 20364             | N/A               | N/A               |
| EN61K-4-3               | Broadband Coupler<br>1~4GHz      | Werlatone             | C5291                  | 6516              | N/A               | N/A               |
| EN61K-4-3               | Coaxial Cable Chmb<br>04-3M-2    | Belden                | RG-8/U                 | Chmb<br>04-3M-2   | N/A               | N/A               |
| EN61K-4-3               | Signal Generator 03              | Anritsu               | MG3642A                | 6200162550        | 06/26/2012        | 06/26/2013        |
| EN61K-4-4               | Digital Oscilloscope             | Tektronix             | TDS 684A               | B010761           | N/A               | N/A               |
| EN61K-4-4               | EFT Clamp                        | Precision             | 1604242                | CNEFT1000-1<br>03 | N/A               | N/A               |
| EN61K-4-5               | CDN-UTP8 01                      | EMC Partner           | CDN-UTP8               | 032               | 12/01/2011        | 12/01/2012        |
| EN61K-4-5               | SURGE-TESTER 01                  | EMC Partner           | MIG0603IN3             | 778               | 12/01/2011        | 12/01/2012        |
| EN61K-4-6               | 6dB Attenuator                   | Weinschel<br>Corp     | 33-6-34                | BC5975            | N/A               | N/A               |
| EN61K-4-6               | Amplifier 4-6                    | Amplifier<br>Research | 150A100                | 1-1-R-02157       | N/A               | N/A               |
| EN61K-4-6               | Attenuator 6dB 4-6               | BIRO                  | 100-A-FFN-06           | 0123              | N/A               | N/A               |
| EN61K-4-6               | CDN M2+M3                        | Frankonia             | M2+M3                  | A3011016          | 07/30/2012        | 07/30/2013        |
| EN61K-4-6               | CDN T2 01                        | Frankonia             | T2                     | A3010003          | 07/30/2012        | 07/30/2013        |
| EN61K-4-6               | CDN T4 05                        | FCC Inc.              | FCC-801-T4-R<br>J45    | 08020             | 08/26/2011        | 08/26/2012        |
| EN61K-4-6               | CDN T8 01                        | FCC Inc.              | FCC-801-T8-R<br>J45    | 08021             | 08/26/2011        | 08/26/2012        |
| EN61K-4-6               | EM-Clamp 01                      | FCC                   | F-203I-23MM            | 539               | N/A               | N/A               |
| EN61K-4-6               | Coaxial Cable 4-6 01-1           | Harbour<br>Industries | M17/128-RG4<br>00      | 4-6 01-1          | N/A               | N/A               |
| EN61K-4-6               | Coaxial Cable 4-6 01-2           | Harbour<br>Industries | M17/128-RG4<br>00      | 4-6 01-2          | N/A               | N/A               |
| EN61K-4-6               | Coaxial Cable 4-6 01-3           | Harbour<br>Industries | M17/128-RG4<br>00      | 4-6 01-3          | N/A               | N/A               |
| EN61K-4-6               | KAL-AD RJ45S                     | BIRO                  |                        |                   | N/A               | N/A               |
| EN61K-4-6               | KAL-AD T2                        | BIRO                  |                        |                   | N/A               | N/A               |
| EN61K-4-6               | Passive Impedance<br>Adaptor 4-6 | FCC                   | FCC-801-150-<br>50-CDN | 9758;9759         | N/A               | N/A               |
| EN61K-4-6,<br>CISPR 13, | Signal Generator 02              | НР                    | 8648B                  | 3642U01040        | 08/18/2011        | 08/18/2012        |
| Antenna                 | Magnetic Field Antenna           | Provision             | ΤΟ ΔΙΖΑΑΡ              | MF1000-23         | N/A               | N/A               |
| EN61K-4-8               | he equipment does not            |                       | TRAIZ44B               | IVII:1000-23      | 11/71             | 1N/ A             |

PS: N/A => The equipment does not need calibration.



| Test Item Filename |                      | Version |
|--------------------|----------------------|---------|
| EN61000-3-2        | HARCS.EXE            | 4.16    |
| EN61000-3-3        | HARCS.EXE            | 4.16    |
| EN61000-4-3        | Tile.Exe             | 2.0.P   |
|                    | EN61000-4-6          |         |
| EN61000-4-6        | Application Software | 1.13.e  |
| EN61000-4-2        | N/A                  | 2.0     |
| EN61000-4-4        | Tema.EXE             | 1.69    |
| EN61000-4-5        | Tema.EXE             | 1.69    |
| EN61000-4-8        | N/A                  |         |
| EN61000-4-11       | VDS-2002Rs.EXE       | 2.00    |

#### 14.1.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

| Radiation/Conduction | Filename | Version | Issued Date |
|----------------------|----------|---------|-------------|
| Hsichih Conduction   | EZ EMC   | 1.1.4.2 | 2/10/2007   |
| Hsichih Radiation    | EZ EMC   | 1.1.4.2 | 1/24/2007   |



#### 14.2 Appendix B: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2003. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 01>  $\pm$  3.262dB

<OATS 01 (10M)> Horizontal 30MHz~200MHz: ±4.216 dB 200MHz~1GHz: ±4.438 dB Vertical 30MHz~200MHz: ±4.342 dB 200MHz~1GHz: ±4.426 dB

<Chamber 14 (3M)> 1GHz~18GHz: ± 3.606dB 18GHz~26GHz: ± 3.618dB



| <immunity 01=""></immunity> |
|-----------------------------|
|-----------------------------|

| Test item                              | Uncertainty    |  |  |
|----------------------------------------|----------------|--|--|
| EN61000-4-2 (ESD)                      |                |  |  |
| Rise time tr                           | ≦ 15%          |  |  |
| Peak current Ip                        | $\leq 6.3\%$   |  |  |
| current at 30 ns                       | $\leq 6.3\%$   |  |  |
| current at 60 ns                       | $\leq 6.3\%$   |  |  |
| EN61000-4-3 (RS)                       | ± 1.776dB      |  |  |
| EN61000-4-4 (EFT)                      |                |  |  |
| Time                                   | $\pm 1.427\%$  |  |  |
| Voltage                                | $\pm$ 1.110 %  |  |  |
| Current                                |                |  |  |
| EN61000-4-5 (Surge)                    |                |  |  |
| Time                                   | $\pm 0.588$ %  |  |  |
| Voltage                                | $\pm$ 1.282 %  |  |  |
| Current                                | $\pm$ 1.282 %  |  |  |
| EN61000-4-6 (CS)                       | $\pm 1.892 dB$ |  |  |
| CDN                                    | ± 1.36dB       |  |  |
| EM Clamp                               | ± 3.19dB       |  |  |
| EN61000-4-8 (Magnetic)                 | $\pm 1.728\%$  |  |  |
| EN61000-4-11 (Dips)                    |                |  |  |
| Time                                   | ±1.159%        |  |  |
| Voltage                                | ±0.100%        |  |  |
| Current                                | ±1.177%        |  |  |
| EN61000-3-2 (Harmonics)                | ±1.879 %       |  |  |
| EN61000-3-3 (Fluctuations and Flicker) | ±1.879 %       |  |  |



#### 14.3 Appendix C: Photographs of EUT

Please refer to the File of ISL-12HE227P