

Issue	e Da	ate:	
Ref.	Rep	port	No

January 23, 2015 ISL-13LE459CE-R3

	1
Product Name	: Network Attached Storage
Models	: TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U
	II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP;
	NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG
	II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP;
	TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+
Brand	: QNAP
Responsible Party	: QNAP Systems, Inc.
Address	: 3F, No.22, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan

We, International Standards Laboratory, hereby certify that:

The device bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive- EMC Directive 2004/108/EC. The device was passed the test performed according to :

Standards:

EN 55022: 2010+AC2011 and CISPR 22: 2008 (modified) EN 61000-3-2: 2006+A1:2009 +A2:2009 and IEC 61000-3-2: 2005+A1:2008 +A2:2009 EN 61000-3-3: 2013 and IEC 61000-3-3: 2013 EN 55024: 2010 and CISPR 24: 2010 EN 61000-4-2: 2009 and IEC 61000-4-2: 2008 EN 61000-4-3: 2006+A1: 2008 +A2: 2010 and IEC 61000-4-3:2006+A1: 2007+A2: 2010 EN 61000-4-4:2012 and IEC 61000-4-4:2012 EN 61000-4-5: 2006 and IEC 61000-4-5: 2005 EN 61000-4-6: 2009 and IEC 61000-4-6: 2008 EN 61000-4-8: 2010 and IEC 61000-4-8: 2009 EN 61000-4-11: 2004 and IEC 61000-4-11: 2004

CE

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

International Standards Laboratory

Jim Chu

Jim Chu / Director

 ☑ Hsi-Chih LAB:

 No. 65, Gu Dai Keng Street, Hsi-Chih Dist.,

 New Taipei City 221, Taiwan

 Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

 ℕ Nemko

CE MARK TECHNICAL FILE

AS/NZS EMC CONSTRUCTION FILE

of

Product Name

Network Attached Storage

Models

TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+

Brand

QNAP

Contains:

- 1. Declaration of Conformity
- 2. EN55022/CISPR 22, AS/NZS CISPR 22 EMI test report
- 3. EN55024/CISPR 24, EN61000-3-2 / IEC 61000-3-2, and EN61000-3-3 / IEC 61000-3-3 test report
- 4. Certificate of EN60950-1
- 5. Block Diagram and Schematics
- 6. Users' manual

Declaration of Conformity

Name of Responsible Party:	QNAP Systems, Inc.
Address of Responsible Party:	3F, No.22, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan
Declares that product:	Network Attached Storage
Models:	TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+
Brand:	QNAP
Assembled by:	Same as above
Address:	Same as above

Conforms to the EMC Directive 2004/108/EC as attested by conformity with the following harmonized standards:

EN 55022:2010+AC:2011, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009+A1:2010: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

Standard	Description	Results	Criteria
EN 61000-4-2:2009 IEC 61000-4-2:2008	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 +A2:2010 IEC 61000-4-3:2006+A1:2007+A2:2010	Radio-Frequency, Electromagnetic Field	Pass	А
EN 61000-4-4:2012 IEC 61000-4-4:2012	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5:2006 IEC 61000-4-5:2005	Surge	Pass	В
EN 61000-4-6:2009 IEC 61000-4-6:2008	Conductive Disturbance	Pass	А
EN 61000-4-8:2010 IEC 61000-4-8:2009	Power Frequency Magnetic Field	Pass	А
EN 61000-4-11:2004 IEC 61000-4-11:2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

<to be continued>

Page 2 of 2 Report No. ISL-13LE459CE-R3

Standard	Description	Results
EN 61000-3-2:2006 +A1:2009 +A2:2009 IEC 61000-3-2:2005 +A1:2008 +A2:2009	Limits for harmonics current emissions	Pass
EN 61000-3-3:2013 IEC 61000-3-3:2013	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

Conforms to the Low Voltage Directive 2006/95/EC, 93/68/EEC as attested by conformity with the following harmonized standard:

EN60950-1:2006+A11:2009+A1:2010+A12:2011: Safety of Information Technology Equipment Including electrical business equipment

We, QNAP Systems, Inc., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

QNAP Systems, Inc.

Date: January 23, 2015

Declaration of Conformity

Name of Responsible Party:	QNAP Systems, Inc.
Address of Responsible Party:	3F, No.22, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan
Declares that product:	Network Attached Storage
Models:	TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+
Brand:	QNAP
Assembled by:	Same as above
Address:	Same as above

Conforms to the EMI part of RCM Mark requirements as attested by conformity with the following standards:

EN 55022:2010+AC:2011, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009+A1:2010: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

Standard	Description	Results	Criteria
EN 61000-4-2:2009 IEC 61000-4-2:2008	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 +A2:2010 IEC 61000-4-3:2006+A1:2007+A2:2010	Radio-Frequency, Electromagnetic Field	Pass	А
EN 61000-4-4:2012 IEC 61000-4-4:2012	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5:2006 IEC 61000-4-5:2005	Surge	Pass	В
EN 61000-4-6:2009 IEC 61000-4-6:2008	Conductive Disturbance	Pass	А
EN 61000-4-8:2010 IEC 61000-4-8:2009	Power Frequency Magnetic Field	Pass	А
EN 61000-4-11:2004 IEC 61000-4-11:2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

<to be continued>

Page 2 of 2 Report No. ISL-13LE459CE-R3

Standard	Description	Results
EN 61000-3-2:2006 +A1:2009 +A2:2009 IEC 61000-3-2:2005 +A1:2008 +A2:2009	Limits for harmonics current emissions	Pass
EN 61000-3-3:2013 IEC 61000-3-3:2013	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

We, QNAP Systems, Inc., hereby declare that the equipment bearing the trade name and model number specified above was tested conforming to the applicable Rules under the most accurate measurement standards possible, and that all the necessary steps have been taken and are in force to assure that production units of the same equipment will continue to comply with the requirements.

QNAP Systems, Inc.

Date: January 23, 2015

CE TEST REPORT

of EN55022 / CISPR 22 / AS/NZS CISPR 22 Class A EN55024 / CISPR 24 / IMMUNITY EN61000-3-2 / EN61000-3-3

Product : Network Attached Storage

Models: TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+

Brand: QNAP

Applicant: QNAP Systems, Inc.

Address: 3F, No.22, Zhongxing Rd., Xizhi Dist., New Taipei City 221, Taiwan

Test Performed by:

International Standards Laboratory

<Hsi-Chih LAB> *Site Registration No. BSMI:SL2-IN-E-0037; SL2-R1/R2-E-0037; TAF: 1178 FCC: TW1067; IC: IC4067A-1; NEMKO: ELA 113A VCCI: <Conduction01>C-354, T-1749, <OATS01>R-341, <Chamber01>G-443 *Address: No. 65, Gu Dai Keng Street, Hsi-Chih Dist., New Taipei City 221, Taiwan *Tel: 886-2-2646-2550; Fax: 886-2-2646-4641

Report No.: ISL-13LE459CE-R3 Issue Date : January 23, 2015

This report totally contains 67 pages including this cover page and contents page.

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

Contents of Report

1.	General	1
1.1	Certification of Accuracy of Test Data	1
1.2	Test Standards	2
1.3	Description of EUT	
1.4	Description of Support Equipment	7
1.5	Software for Controlling Support Unit	
1.6	I/O Cable Condition of EUT and Support Units	
2.	Power Main Port Conducted Emissions	
2.1	Test Setup and Procedure	.10
2.2	Conduction Test Data: Configuration 1	
2.3	Test Setup Photo	
3.	Telecommunication Port Conducted Emissions	
3.1	Test Setup and Procedure	
3.2	Test Data: LAN10M: Configuration 1	
3.3	Test Data: LAN100M: Configuration 1	
3.4	Test Data: LANGIGA (Voltage): Configuration 1	
3.5	Test Data: LAN10M: Configuration 2	
3.6	Test Data: LAN100M: Configuration 2	
3.7	Test Data: LANGIGA (Voltage): Configuration 2	
3.8	Test Data: LAN10M: Configuration 3	
3.9	Test Data: LAN100M: Configuration 3	
3.10		
3.11		
3.12	-	
3.12	e e	
3.14		
	Radiated Disturbance Emissions	
4.1	Test Setup and Procedure	
4.1	Radiation Test Data: Configuration 1	
4.2	Test Setup Photo	
	1	
5. 5.1	Electrostatic discharge (ESD) immunity	
	Test Specification	
5.2 5.3	Test Setup	
5.5 5.4	Test Result	
	Test Point	
5.5	Test Setup Photo	
	Radio-Frequency, Electromagnetic Field immunity	
6.1	Test Specification	
6.2	Test Setup	
6.3	Test Result	
6.4	Test Setup Photo	
	Electrical Fast transients/burst immunity	
7.1	Test Specification	
7.2	Test Setup	
7.3	Test Result	
7.4	Test Setup Photo	
	Surge Immunity	
8.1	Test Specification	.45

8.2	Test Setup	45
8.3	Test Result	45
8.4	Test Setup Photo	46
9. In	nmunity to Conductive Disturbance	47
9.1	Test Specification	47
9.2	Test Setup	47
9.3	Test Result	47
9.4	Test Setup Photo	48
10. Po	ower Frequency Magnetic Field immunity	49
10.1	Test Specification	49
10.2	Test Setup	49
10.3	Test Result	49
10.4	Test Setup Photo	50
11. V	oltage Dips, Short Interruption and Voltage Variation immunity	51
11.1	Test Specification	51
11.2	Test Setup	51
11.3	Test Result	51
11.4	Test Setup Photo	52
12. H	armonics	53
12.1	Test Specification	53
12.2	Test Setup	53
12.3	Test Result	53
12.4	Test Data	54
12.5	Test Setup Photo	56
13. V	oltage Fluctuations	57
13.1	Test Specification	57
13.2	Test Setup	57
13.3	Test Result	57
13.4	Test Data	58
13.5	Test Setup Photo	59
14. A	ppendix	60
14.1	Appendix A: Test Equipment	60
14.2	Appendix B: Uncertainty of Measurement	63
14.3	Appendix C: Photographs of EUT Please refer to the File of ISL-13LE459P-R3	

1. General

1.1 Certification of Accuracy of Test Data

Standards:	Please refer to 1.2
Equipment Tested:	Network Attached Storage
Models:	TS-1271U-RP; TS-871U-RP; TS-871U-RP+; TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP; NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+; NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP; TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP; TVS-871U-RP+; TVS-1271U-RP+
Brand:	QNAP
Applicant:	QNAP Systems, Inc.
Sample received Date:	January 12, 2015
Final test Date:	EMI: refer to the date of test data
	EMS: January 22, 2015
Test Site:	International Standards Laboratory
	OATS 01; Chamber 01; Conduction 01; Immunity 01
Test Distance:	10M; 3M (above1GHz) (EMI test)
Temperature:	refer to each site test data
Humidity:	refer to each site test data
Input power:	Conduction input power: AC 230 V / 50 Hz
	Radiation input power: AC 230 V / 50 Hz
	Immunity input power: AC 230 V / 50 Hz
Test Result:	PASS
Report Engineer:	Winnie Huang
Test Engineer:	TOP. W/C. Lico

JOE WELIGO

Joe WC Liao

Approved By:

Eddy Hising

International Standards Laboratory

Report Number: ISL-13LE459CE-R3

1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory in accordance with the following

EN 55022:2010+AC:2011, CISPR 22:2008 (modified) and AS/NZS CISPR 22: 2009+A1:2010: Class A: Limits and methods of measurement of Radio Interference characteristics of Information Technology Equipment.

EN 55024:2010 and CISPR 24:2010: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

Standard	Description	Results	Criteria
EN 61000-4-2:2009 IEC 61000-4-2:2008	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 +A2:2010 IEC 61000-4-3:2006+A1:2007+A2:2010	Radio-Frequency, Electromagnetic Field	Pass	А
EN 61000-4-4:2012 IEC 61000-4-4:2012	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5:2006 IEC 61000-4-5:2005	Surge	Pass	В
EN 61000-4-6:2009 IEC 61000-4-6:2008	Conductive Disturbance	Pass	А
EN 61000-4-8:2010 IEC 61000-4-8:2009	Power Frequency Magnetic Field	Pass	А
EN 61000-4-11:2004 IEC 61000-4-11:2004	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 period	Pass	В
	30% in 25 period	Pass	С
	>95% in 250 period	Pass	С

Standard	Description	Results
EN 61000-3-2:2006 +A1:2009 +A2:2009 IEC 61000-3-2:2005 +A1:2008 +A2:2009	Limits for harmonics current emissions	Pass
EN 61000-3-3:2013 IEC 61000-3-3:2013	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

1.2.1 Performance Criteria for Compliance: EN 55024

Performance criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion B

After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance criterion C

During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

1.3 Description of EUT

EUT

Product Name	Network Attached Storage
Condition	Pre-Production
Model Numbers	TS-1271U-RP; TS-871U-RP; TS-871U-RP+;
Widder Wumbers	TS-1271U-RP+; TS-871U II-RP; TS-1271U II-RP;
	NAS-871UG-RP; NAS-1271UG-RP; NAS-871UG-RP+;
	NAS-1271UG-RP+; NAS-871UG II-RP; NAS-1271UG
	II-RP; WB-871U-RP; WB-1271U-RP; TVS-871U-RP;
	TVS-1271U-RP; TVS-871U II-RP; TVS-1271U II-RP;
	TVS-871U-RP+; TVS-1271U-RP+
Serial Number	N/A
Power Supply	ZIPPY (Model : M1P-2500V)
Tower Suppry	AC Input: 100-240Vac, 47-63Hz 8-4A
	DC Output: +12V, 41A; +5VSB 0-3.5A
	DELTA (Model: DPS-500AB-9 A)
	AC Input: 100-240Vac, 50-60Hz 7-3.5A
	DC Output: +12V, 40.2A; +5VSB 3.52A
	DELTA (Model: DPS-250AB-81A)
	Input: 100-240V, 5A-2.5A, 50-60Hz
	Output: +12V, 20A; +5VSB 2A
CPU	Model: Intel® Core™ i3-4130 Processor; 3.4GHz or
	Model: Intel® Core [™] i3-4340 Processor; 3.6GHz or
	Model: Intel® Core [™] i3-4330 Processor; 3.5GHz or
	Model: Intel® Xeon E3-1275V3; 3.5GHz or
	Model: Intel® Xeon E3-1245V3; 3.4GHz or
	Model: Intel® Xeon E3-1225V3; 3.2GHz or
	Model: Intel® Celeron G1820; 2.7GHz or
	Model: Intel® Xeon E3-1246V3; 3.5GHz or
	Model: Intel® Xeon E3-1231V3; 3.4GHz or
	Model: Intel® Xeon E3-1226V3 ; 3.3GHz or
	Model: Intel® Core i3-4150; 3.5GHz or
	Model: Intel® PENTINM G3250 3.2GHz (Add)
Motherboard	Model: TS-EC2480U-RP
SATA Board	Model: TS-1271U-RP
Memory	4GB; DDR3; 1600MHz or
5	8GB; DDR3; 1600MHz or
	2GB; DDR3; 1600MHz or
	Transcend 8GB DDR3 1600MHz (Add)
USB Flash	one
HDMI Port	one 19-pins
RJ45 Port	four 8-pins (10/100/1000Mbps)
USB 3.0 Port	four 9-pins
USB 2.0 Port	four 4-pins
Power Switch	one

Reset Switch	one
AC Power Port	two
Maximum Operating Frequency	3.2GHz

Radiation & Conduction & EMS Configurations

Configurations	CPU	Power Supply
1	Intel® PENTINM G3250 3.2GHz (Add)	DELTA (Model: DPS-500AB-9
		A)*2

Telecom Configurations

Configurations	СРИ	Power Supply	RJ45 Port
1	Intel® PENTINM G3250	DELTA (Model:	Port1
2	3.2GHz (Add)	DPS-500AB-9 A)*2	Port2
3			Port3
4			Port4

Different Model list:

Model	Logo	Market
TS-871U-RP	QNAP Carton	
TS-1271U-RP	QNAP Carton	
TS-871U-RP+	QNAP Carton	
TS-1271U-RP+	QNAP Carton	
TS-871U II-RP	QNAP Carton	
TS-1271U II-RP	QNAP Carton	
NAS-871UG-RP	Generic Carton	
NAS-1271UG-RP	Generic Carton	
NAS-871UG-RP+	Generic Carton	
NAS-1271UG-RP+	Generic Carton	Different Marketing
NAS-871UG II-RP	Generic Carton	Different Marketing
NAS-1271UG II-RP	Generic Carton	
WB-871U-RP	QNAP Carton	
WB-1271U-RP	QNAP Carton	
TVS-871U-RP	QNAP Carton	
TVS-1271U-RP	QNAP Carton	
TVS-871U II-RP	QNAP Carton	
TVS-1271U II-RP	QNAP Carton	
TVS-871U-RP+	QNAP Carton	
TVS-1271U-RP+	QNAP Carton	

EMI Noise Source

ENTITIONSE Source		
Motherboard Crystal	25MHz(Y2)	The same as Photo EUT-14
	32.768KHz (Y1)	The same as Photo EUT-15
	25MHz (Y3)	The same as Photo EUT-16
	25MHz (Y4)	The same as Photo EUT-17
	25MHz (Y5)	The same as Photo EUT-18
	25MHz (Y6)	The same as Photo EUT-19
SATA board Crystal	25MHz (Y1)	The same as Photo EUT-20
	25MHz (Y2)	The same as Photo EUT-21
	25MHz (Y3)	The same as Photo EUT-22
	25MHz (Y4)	The same as Photo EUT-23
	25MHz (Y5)	The same as Photo EUT-24
	25MHz (Y6)	The same as Photo EUT-25
	25MHz (Y7)	The same as Photo EUT-26
	25MHz (Y8)	The same as Photo EUT-27
USB Flash Crystal	12MHz (Y1)	The same as Photo EUT-28

EMI Solution N/A

1.4 Description of Support Equipment

Unit	Model	Brand	Power Cord	FCC ID
	Serial No.			
Notebook Personal	U36JC	ASUS	Non-shielded,	FCC DOC
Computer	S/N: N/A		Detachable	
Rack mountable Switch	DGS-1008D	D-Link	Non-shielded,	FCC DOC
Rack mountable Switch	DGS-1008D	D-LIIIK	Detachable	
24" LCD Monitor	U2413f	DELL	Non-shielded,	FCC DOC
24 LCD Womton	S/N: NA		Detachable	TEC DOC
USB3.0 External HDD	WDBACY5000ABK-PESN	WD	N/A	FCC DOC
Enclosure*4	S/N: XH1E31FSV80			
USB2.0 External HDD	Ipod nano	Apple	N/A	FCC DOC
Enclosure *4	S/N: N/A			FCC DOC
3.5" SATA Hard	WD500AADS	WD	N/A	FCC DOC
Disk*12	WD300AADS	VV D		

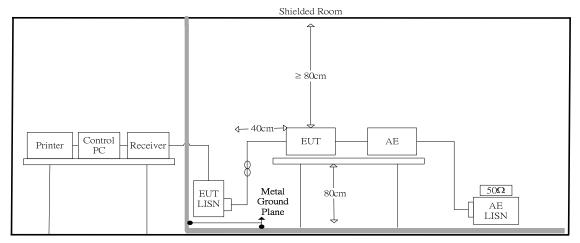
1.5 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Send EUT Information to the video port device (LED Monitor).
- B. Read and write to the disk drives.
- C. Send package to the Router LAN port (Router).
- D. Receive and transmit package of EUT to the Rack mountable Switch HUB through LAN port.
- E. Used Tfgen.exe to send signal to EUT RJ45 port through PC RJ45 port.
- F. Read and write data in the USB2.0 External HDD Enclosure through USB2.0 port.
- G. Read and write data in the USB3.0 External HDD Enclosure through EUT USB3.0 port.
- H. Search External HDD from PC RJ45 to EUT RJ45 with Finder.exe.
- I. Repeat the above steps.

	File name	Issued Date
USB2.0 External HDD	IntelEMC.exe	9/04/2000
USB3.0 External HDD Enclosure	IntelEMC.exe	9/04/2000
RJ45	ping.exe	05/05/1999
RJ45	Tfgen.exe	06/23/1999
EUT	Finder.exe	11/15/2008
EUT Hard Disk	IntelEMC.exe	9/04/2000

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord*2	110V (~240V) to EUT SPS	1.8M	Non-shielded, Detachable	Plastic Head
USB3.0 Data Cable*4	USB3.0 External HDD Enclosure USB3.0 Port to EUT USB3.0 Port	1M	Shielded, Detachable	Metal Head
USB2.0 Data Cable *4	External HDD Enclosure USB Port to EUT USB 2.0 Port	1M	Shielded, Detachable	Metal Head
RJ45 Data Cable*4	EUT RJ45 Port to Switch HUB RJ45 Port	1.5M	Non-shielded, Detachable	RJ-45, with Plastic Head
RJ45 Data Cable	Switch HUB RJ45 Port to Notebook RJ45 Port	10M	Non-shielded, Detachable	RJ-45, with Plastic Head
Display Data Cable	EUT HDMI Port to LED Monitor HDMI Port	1.8M	Shielded, Detachable	Metal Head


1.6 I/O Cable Condition of EUT and Support Units

2. Power Main Port Conducted Emissions

2.1 Test Setup and Procedure

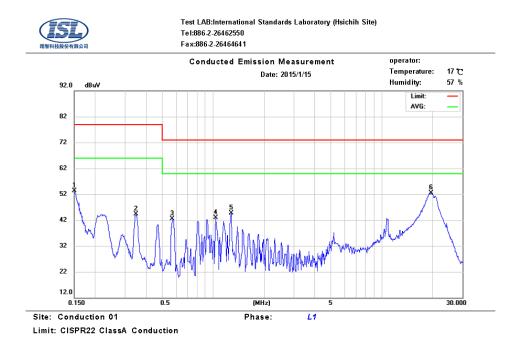
2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured. All of the interface cables were manipulated according to EN 55022 requirements.


The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

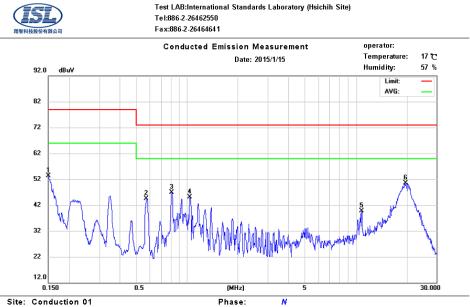
Frequency Range:	150KHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

2.2 Conduction Test Data: Configuration 1 Table 2.2.1 Power Line Conducted Emissions (Line)

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.15	9.63	53.23	79.00	-25.77	53.23	66.00	-12.77	
2	0.35	9.63	44.26	79.00	-34.74	44.26	66.00	-21.74	
3	0.58	9.64	42.55	73.00	-30.45	42.55	60.00	-17.45	
4	1.04	9.66	42.91	73.00	-30.09	42.91	60.00	-17.09	
5	1.27	9.68	44.68	73.00	-28.32	44.68	60.00	-15.32	
6	19.48	9.82	52.57	73.00	-20.43	52.57	60.00	-7.43	

Note:

Margin = QP/AVG Emission - Limit


QP/AVG Emission = Receiver Reading + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

Table 2.2.2 Power Line Conducted Emissions (Neutral)

Limit: CISPR22 ClassA Conduction

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.15	9.64	53.21	79.00	-25.79	53.21	66.00	-12.79	
2	0.58	9.64	44.41	73.00	-28.59	44.41	60.00	-15.59	
3	0.81	9.65	46.96	73.00	-26.04	46.96	60.00	-13.04	
4	1.04	9.65	45.20	73.00	-27.80	45.20	60.00	-14.80	
5	10.80	9.82	39.65	73.00	-33.35	39.65	60.00	-20.35	
6	19.68	10.01	50.52	73.00	-22.48	50.52	60.00	-9.48	

Note:

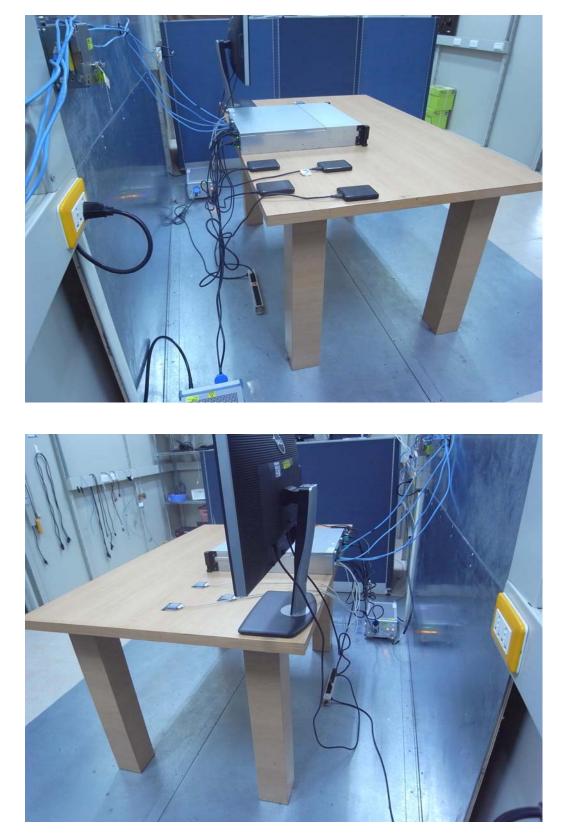
Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor

Correct Factor = LISN Loss + Cable Loss

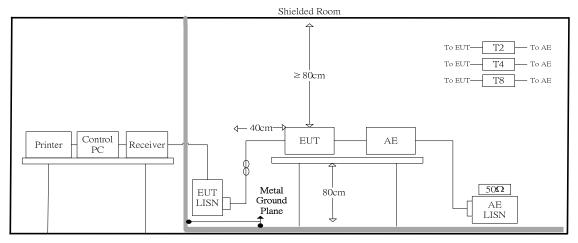
A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result. If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.


2.3 Test Setup Photo

Front View

Back View



3. Telecommunication Port Conducted Emissions

3.1 Test Setup and Procedure

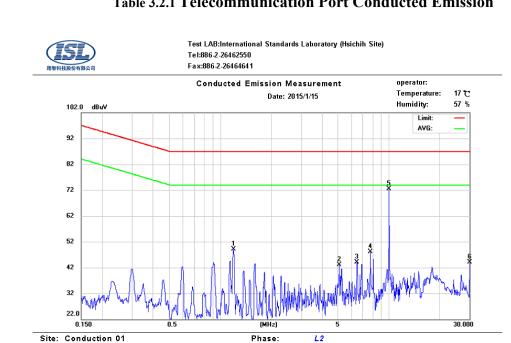
3.1.1 Test Setup

3.1.2 Test Procedure

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement. All of the interface cables were manipulated according to EN 55022 requirements.

The port of the EUT was connected to the support equipment through the ISN and linked in normal condition.


AC input power for the EUT & the support equipment power outlets were obtained from the same filtered source that provided input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150KHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9KHz

3.2 Test Data: LAN--10M: Configuration 1 Table 3.2.1 Telecommunication Port Conducted Emission

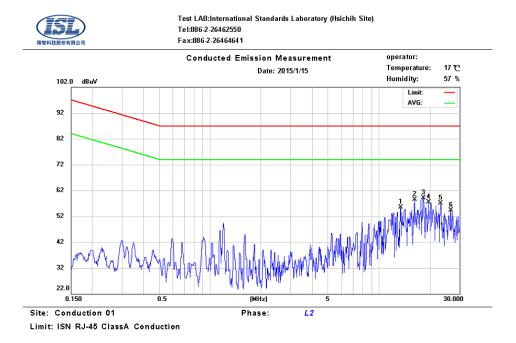
Limit: ISN RJ-45 ClassA Conduction

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	46.12	87.00	-40.88	43.72	74.00	-30.28	
2	5.08	9.61	38.10	87.00	-48.90	36.07	74.00	-37.93	
3	6.47	9.61	37.38	87.00	-49.62	32.65	74.00	-41.35	
4	7.75	9.60	35.04	87.00	-51.96	31.78	74.00	-42.22	
5	10.00	9.61	63.68	87.00	-23.32	45.34	74.00	-28.66	
6	30.00	10.03	44.83	87.00	-42.17	31.73	74.00	-42.27	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

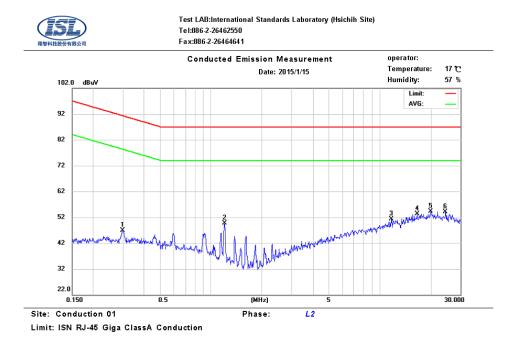
3.3 Test Data: LAN--100M: Configuration 1 Table 3.3.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	13.43	9.62	45.10	87.00	-41.90	42.74	74.00	-31.26	
2	16.23	9.65	54.43	87.00	-32.57	51.86	74.00	-22.14	
3	18.25	9.69	45.86	87.00	-41.14	44.29	74.00	-29.71	
4	19.73	9.73	39.22	87.00	-47.78	34.67	74.00	-39.33	
5	23.13	9.83	52.12	87.00	-34.88	50.24	74.00	-23.76	
6	26.63	9.93	35.07	87.00	-51.93	31.38	74.00	-42.62	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

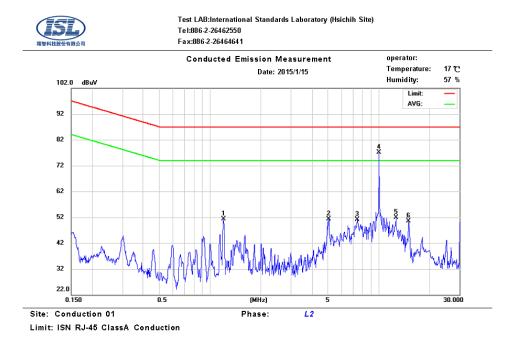
3.4 Test Data: LAN--GIGA (Voltage): Configuration 1 Table 3.4.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.30	9.95	42.23	91.28	-49.05	38.91	78.28	-39.37	
2	1.20	9.70	46.31	87.00	-40.69	43.76	74.00	-30.24	
3	11.70	9.61	43.03	87.00	-43.97	37.48	74.00	-36.52	
4	16.52	9.67	45.29	87.00	-41.71	39.66	74.00	-34.34	
5	19.98	9.74	46.27	87.00	-40.73	40.54	74.00	-33.46	
6	24.40	9.87	45.21	87.00	-41.79	39.69	74.00	-34.31	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

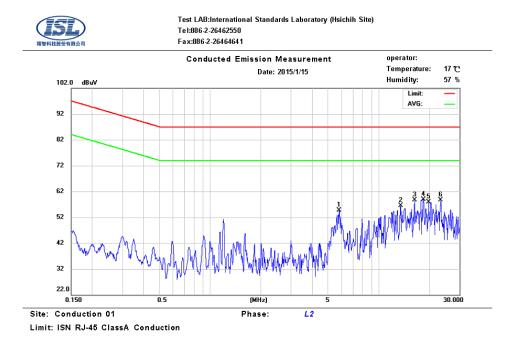
3.5 Test Data: LAN--10M: Configuration 2 Table 3.5.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	49.72	87.00	-37.28	48.32	74.00	-25.68	
2	5.05	9.61	42.79	87.00	-44.21	39.02	74.00	-34.98	
3	7.42	9.60	38.36	87.00	-48.64	36.21	74.00	-37.79	
4	10.00	9.61	65.09	87.00	-21.91	32.32	74.00	-41.68	
5	12.55	9.62	39.07	87.00	-47.93	34.48	74.00	-39.52	
6	14.93	9.64	36.37	87.00	-50.63	33.42	74.00	-40.58	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

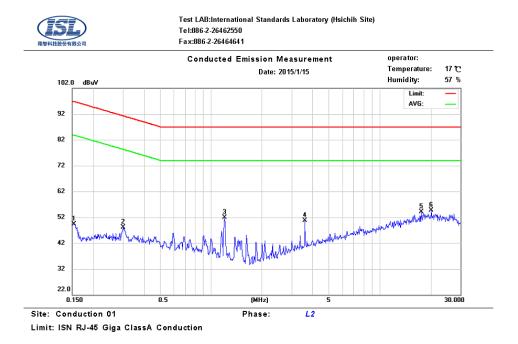
3.6 Test Data: LAN--100M: Configuration 2 Table 3.6.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	5.83	9.60	40.49	87.00	-46.51	35.23	74.00	-38.77	
2	13.43	9.62	45.38	87.00	-41.62	42.26	74.00	-31.74	
3	16.23	9.65	54.77	87.00	-32.23	51.68	74.00	-22.32	
4	18.25	9.69	45.37	87.00	-41.63	42.51	74.00	-31.49	
5	19.70	9.73	39.67	87.00	-47.33	32.47	74.00	-41.53	
6	23.13	9.83	53.90	87.00	-33.10	50.88	74.00	-23.12	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

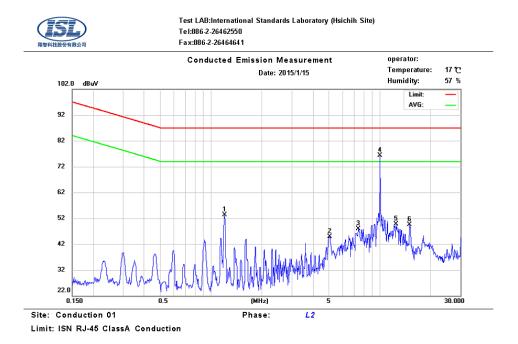
3.7 Test Data: LAN--GIGA (Voltage): Configuration 2 Table 3.7.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.15	10.25	45.53	96.77	-51.24	43.84	83.77	-39.93	
2	0.30	9.95	41.65	91.26	-49.61	37.57	78.26	-40.69	
3	1.20	9.70	48.35	87.00	-38.65	46.52	74.00	-27.48	
4	3.58	9.63	33.93	87.00	-53.07	28.31	74.00	-45.69	
5	17.52	9.68	45.48	87.00	-41.52	39.91	74.00	-34.09	
6	20.15	9.74	46.02	87.00	-40.98	40.46	74.00	-33.54	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

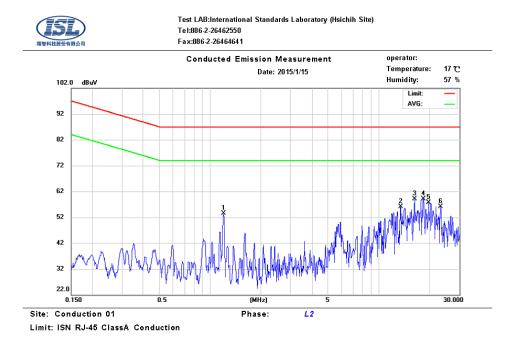
3.8 Test Data: LAN--10M: Configuration 3 Table 3.8.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	51.08	87.00	-35.92	49.34	74.00	-24.66	
2	5.05	9.61	38.50	87.00	-48.50	33.74	74.00	-40.26	
3	7.42	9.60	38.83	87.00	-48.17	35.18	74.00	-38.82	
4	10.00	9.61	65.26	87.00	-21.74	33.66	74.00	-40.34	
5	12.43	9.61	37.84	87.00	-49.16	32.65	74.00	-41.35	
6	14.93	9.64	35.54	87.00	-51.46	32.04	74.00	-41.96	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

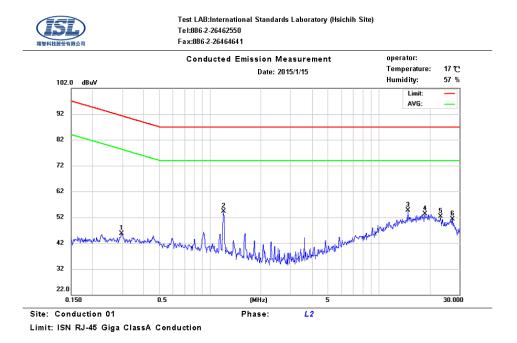
3.9 Test Data: LAN--100M: Configuration 3 Table 3.9.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	51.30	87.00	-35.70	49.49	74.00	-24.51	
2	13.43	9.62	45.68	87.00	-41.32	43.46	74.00	-30.54	
3	16.23	9.65	54.80	87.00	-32.20	52.56	74.00	-21.44	
4	18.25	9.69	46.15	87.00	-40.85	44.11	74.00	-29.89	
5	19.70	9.73	35.83	87.00	-51.17	31.52	74.00	-42.48	
6	23.13	9.83	51.58	87.00	-35.42	49.28	74.00	-24.72	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

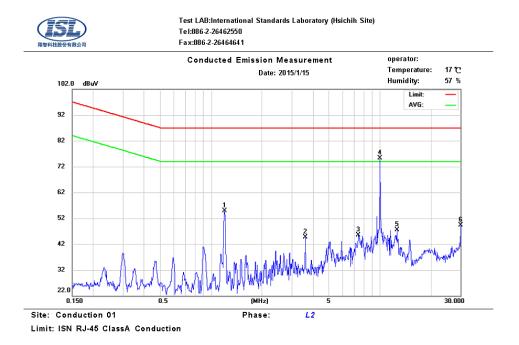
3.10 Test Data: LAN--GIGA (Voltage): Configuration 3 Table 3.10.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.30	9.95	39.78	91.31	-51.53	35.29	78.31	-43.02	
2	1.20	9.70	51.24	87.00	-35.76	49.43	74.00	-24.57	
3	14.80	9.64	44.66	87.00	-42.34	39.10	74.00	-34.90	
4	18.70	9.70	45.74	87.00	-41.26	40.16	74.00	-33.84	
5	23.13	9.83	43.79	87.00	-43.21	38.14	74.00	-35.86	
6	27.15	9.94	43.30	87.00	-43.70	37.83	74.00	-36.17	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

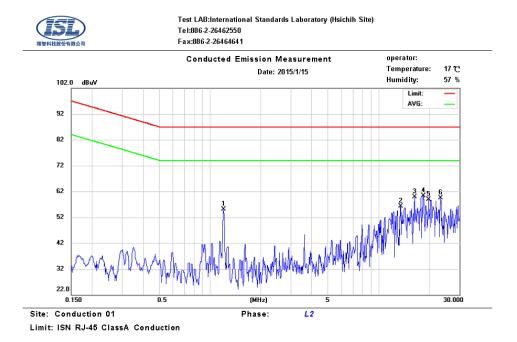
3.11 Test Data: LAN--10M: Configuration 4 Table 3.11.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	52.21	87.00	-34.79	50.59	74.00	-23.41	
2	3.60	9.63	43.33	87.00	-43.67	41.12	74.00	-32.88	
3	7.45	9.60	39.11	87.00	-47.89	35.25	74.00	-38.75	
4	10.00	9.61	65.24	87.00	-21.76	45.24	74.00	-28.76	
5	12.55	9.62	36.48	87.00	-50.52	32.25	74.00	-41.75	
6	30.00	10.03	50.41	87.00	-36.59	40.09	74.00	-33.91	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

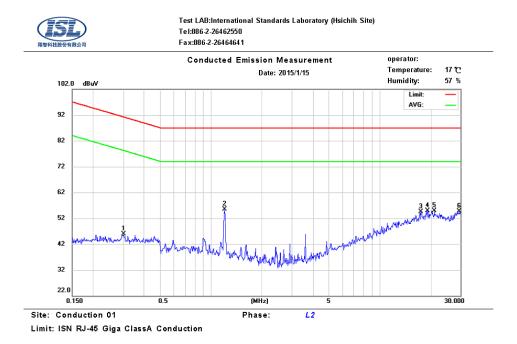
3.12 Test Data: LAN--100M: Configuration 4 Table 3.12.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	1.20	9.70	53.12	87.00	-33.88	51.61	74.00	-22.39	
2	13.43	9.62	45.21	87.00	-41.79	43.40	74.00	-30.60	
3	16.23	9.65	55.71	87.00	-31.29	53.73	74.00	-20.27	
4	18.25	9.69	46.31	87.00	-40.69	44.32	74.00	-29.68	
5	19.70	9.73	37.11	87.00	-49.89	33.40	74.00	-40.60	
6	23.13	9.83	54.68	87.00	-32.32	51.96	74.00	-22.04	

Note :

Margin = QP/AVG Emission - Limit

QP/AVG Emission = Receiver Reading + Correct Factor


Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

3.13 Test Data: LAN--GIGA (Voltage): Configuration 4 Table 3.13.1 Telecommunication Port Conducted Emission

No.	Frequency (MHz)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)	Note
1	0.30	9.95	39.86	91.23	-51.37	34.70	78.23	-43.53	
2	1.20	9.70	53.15	87.00	-33.85	51.51	74.00	-22.49	
3	17.48	9.68	46.02	87.00	-40.98	40.54	74.00	-33.46	
4	19.13	9.72	46.64	87.00	-40.36	41.09	74.00	-32.91	
5	20.95	9.77	46.92	87.00	-40.08	41.36	74.00	-32.64	
6	29.35	10.01	47.82	87.00	-39.18	42.27	74.00	-31.73	

Note :

Margin = QP/AVG Emission - Limit

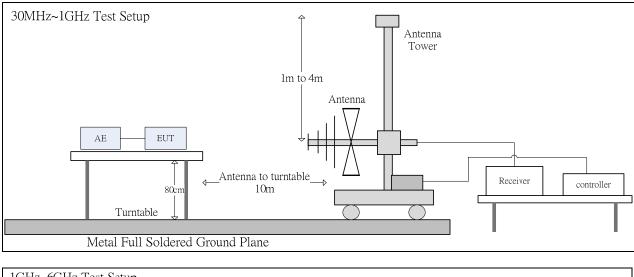
QP/AVG Emission = Receiver Reading + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

3.14 Test Setup Photo


Refer to the Setup Photos for Power Main Port Conducted Emissions

4. Radiated Disturbance Emissions

4.1 Test Setup and Procedure

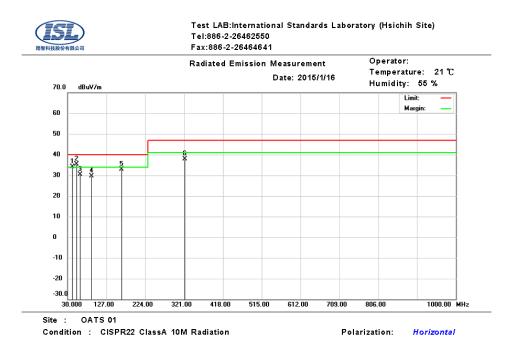
4.1.1 Test Setup

4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a wooden stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions.

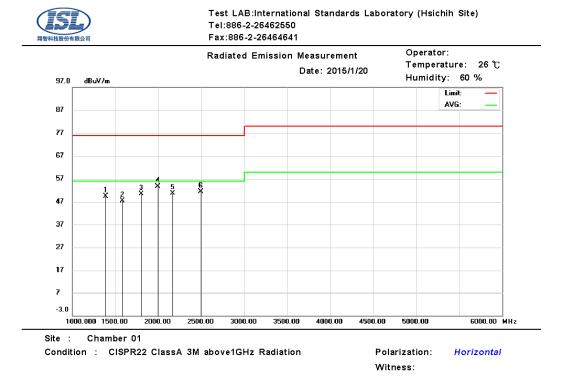
The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.


4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120KHz
Frequency Range:	Above 1 GHz to 6 GHz

Frequency Range:	Above 1 GHz to 6 GI
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

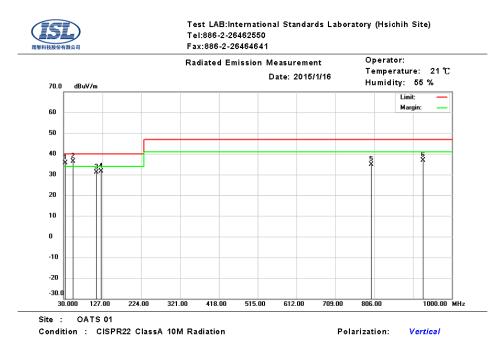
4.2 Radiation Test Data: Configuration 1 Table 4.2.1 Radiated Emissions (Horizontal)



Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	41.6400	20.89	13.31	34.20	40.00	-5.80	315	107	QP
2	52.3100	26.79	8.53	35.32	40.00	-4.68	100	205	QP
3	62.0100	21.59	8.78	30.37	40.00	-9.63	133	88	QP
4	89.7 100	20.87	8.88	29.75	40.00	-10.25	100	216	QP
5	164.8300	19.21	13.56	32.77	40.00	-7.23	164	359	QP
6	322.9400	21.85	16.01	37.86	47.00	-9.14	100	174	QP

* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss A margin of -8dB means that the emission is 8dB below the limit BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

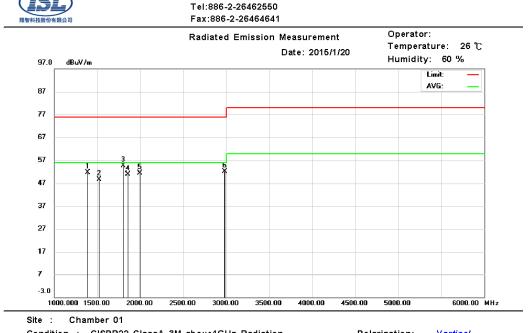

MK.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1390.000	69.99	-20.60	49.39	76.00	-26.61	1 10	22	peak
2	1580.000	67.04	-19.72	47.32	76.00	-28.68	125	141	peak
3	1805.000	67.89	-17.55	50.34	76.00	-25.66	188	165	peak
4	1995.000	69.36	-15.71	53.65	76.00	-22.35	100	258	peak
5	2170.000	65.95	-15.32	50.63	76.00	-25.37	100	223	peak
6	2495.000	65.98	-14.67	51.31	76.00	-24.69	120	234	peak

* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

Table 4.2.2 Radiated Emissions (Vertical)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	34.8500	17.25	18.26	35.51	40.00	-4.49	332	114	QP
2	54.2500	27.88	8.57	36.45	40.00	-3.55	155	294	QP
3	111.4800	16.58	14.56	31.14	40.00	-8.86	100	254	QP
4	124.0900	16.25	15.43	31.68	40.00	-8.32	397	139	QP
5	799.2100	10.05	24.82	34.87	47.00	-12.13	100	143	QP
6	928.2200	10.25	26.62	36.87	47.00	-10.13	263	269	QP


* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss A margin of -8dB means that the emission is 8dB below the limit BILOG Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory

-33-

Condition	CISPR22	ClassA	3 M	above1GHz	Radiation	

Polarization: Vertical Witness:

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1390.000	72.34	-20.60	51.74	76.00	-24.26	100	135	peak
2	1520.000	68.97	-20.31	48.66	76.00	-27.34	100	145	peak
3	1805.000	72.18	-17.55	54.63	76.00	-21.37	188	305	peak
4	1855.000	67.88	-17.07	50.81	76.00	-25.19	100	124	peak
5	1995.000	67.00	-15.71	51.29	76.00	-24.71	100	153	peak
6	2985.000	65.93	-13.79	52.14	76.00	-23.86	100	273	peak

* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit Horn Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

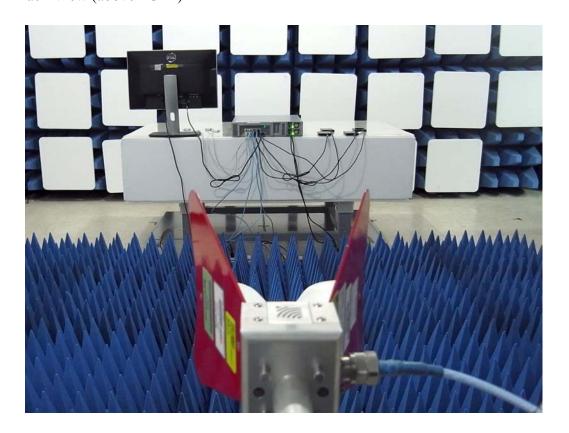
Test LAB:International Standards Laboratory (Hsichih Site)

4.3 Test Setup Photo

Front View (30MHz~1GHz)

Back View (30MHz~1GHz)

International Standards Laboratory



Tra

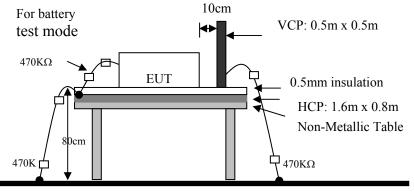
Front View (above 1GHz)

Back View (above 1GHz)

5. Electrostatic discharge (ESD) immunity

Port:	Enclosure
Basic Standard:	EN 61000-4-2/ IEC EN61000-4-2
	(details referred to Sec 1.2)
Test Level:	Air +/- 2 kV, +/- 4 kV, +/- 8 kV
	Contact +/- 4 kV
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S7
Temperature:	24 °C
Humidity:	53%

5.1 Test Specification

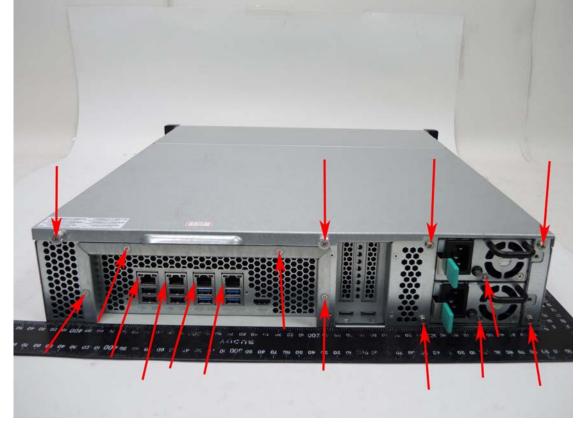

Selected Test Point

- Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air discharges were applied to each selected points.
- Contact: Total 200 discharges minimum were to the selected contact points.

Indirect Contact Points: 25 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

5.2 Test Setup

EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one $470K\Omega$ resister at two rare ends is connected from metallic part of EUT and screwed to HCP.


Ground reference Plane

5.3 Test Result

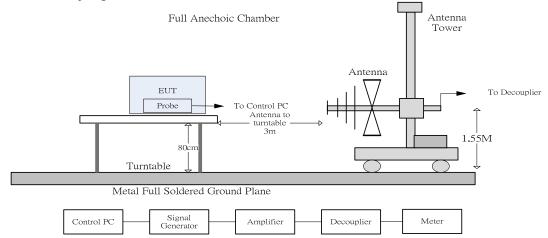
5.4 Test Point

Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.

International Standards Laboratory

Report Number: ISL-13LE459CE-R3

5.5 Test Setup Photo


6. Radio-Frequency, Electromagnetic Field immunity

1	
Port:	Enclosure
Basic Standard:	EN 61000-4-3/ IEC EN61000-4-3
	(details referred to Sec 1.2)
Test Level:	3 V/m
Modulation:	AM 1KHz 80%
Frequency range:	80 MHz~1 GHz
Frequency Step:	1% of last step frequency
Dwell time:	38
Polarization:	Vertical and Horizontal
EUT Azimuth Angle	$\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$
Criteria:	A
Test Procedure	refer to ISL QA -T4-E-S8
Temperature:	22°C
Humidity:	53%

6.1 Test Specification

6.2 Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.

6.3 Test Result

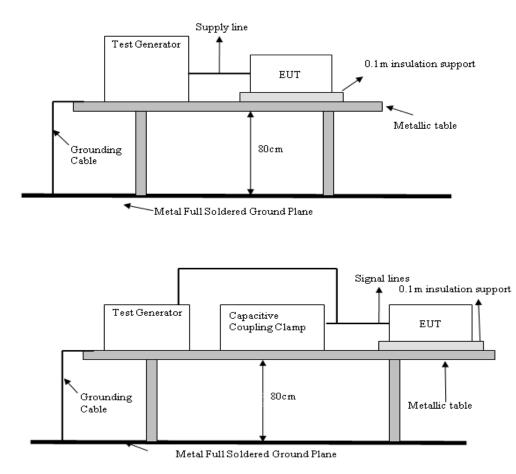
6.4 Test Setup Photo

7. Electrical Fast transients/burst immunity

7.1 Test Specification

Port:	AC mains
Basic Standard:	EN 61000-4-4/ IEC EN61000-4-4
	(details referred to Sec 1.2)
Test Level:	AC Power Port: +/- 1 kV
Rise Time:	5ns
Hold Time:	50ns
Repetition Frequency:	5KHz
Criteria:	В
Test Procedure	refer to ISL QA -T4-E-S9
Temperature:	25 °C
Humidity:	56%

<u>Test Procedure</u> The E<u>UT was setup on a nonconductive table 0.1 m above a reference ground plane.</u>


Test Points	Polarity	Result	Comment
Line	+	N	60 sec
	-	N	60 sec
Neutral	+	N	60 sec
	-	N	60 sec
Ground	+	Ν	60 sec
	-	N	60 sec
Line to	+	N	60 sec
Neutral	-	N	60 sec
Line to	+	N	60 sec
Ground	-	N	60 sec
Neutral to	+	N	60 sec
Ground	-	N	60 sec
Line to Neutral	+	N	60 sec
to Ground	-	N	60 sec
Capacitive coupling	+	N	60 sec
clamp	_	N	60 sec

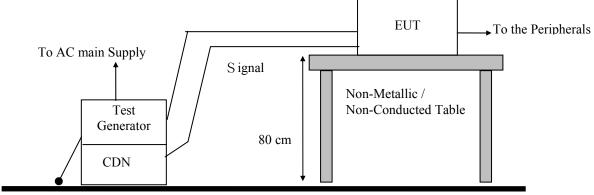
Note: 'N' means normal, the EUT function is correct during the test.

7.2 Test Setup

EUT is at least 50cm from the conductive structure.

7.3 Test Result

7.4 Test Setup Photo



8. Surge Immunity

8.1 Test Specification

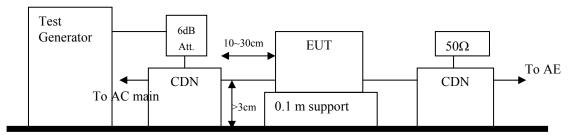
Port:	AC mains	Signal and telecommunication
		port-NA
Basic Standard:	EN 61000-4-5/ IEC EN61000-4	4-5
	(details referred to Sec 1.2)	
Test Level:	Line to Line:	Line to Earth:
	+/- 0.5 kV, +/- 1 kV	+/- 0.5 kV, +/- 1 kV, +/- 4 kV
	Line to Earth:	
	+/- 0.5 kV, +/- 1 kV, +/- 2kV	
Rise Time:	1.2us	10us
Hold Time:	50us	700us
Repetition Rate:	30 seconds	60 seconds
Angle:	$\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$	NA
Criteria:	В	С
Remarks:		Where the coupling network for the 10/700 us
		waveform affects the functioning of high speed data ports, the test shall be carried out using a
		1.2/50 (8/20) us waveform and appropriate
		coupling network.
Test Procedure:	refer to ISL QA -T4-E-S10	
Temperature:	25°C	
Humidity:	56%	

8.2 Test Setup

Metal Full Soldered Ground Plane

8.3 Test Result

8.4 Test Setup Photo



9. Immunity to Conductive Disturbance

AC mains
EN 61000-4-6/ IEC EN61000-4-6
(details referred to Sec 1.2)
3 V
AM 1KHz 80%
0.15 MHz - 80MHz
1% of last Frequency
3s
А
CDN M2+M3, CDN T2, CDN T4, CDN
T8, EM Clamp
refer to ISL QA -T4-E-S11
24°C
56%

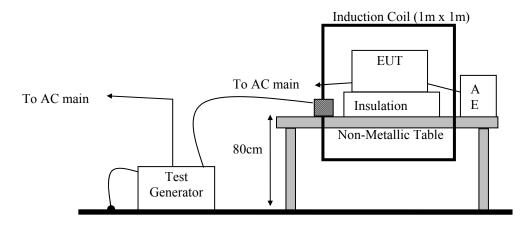
9.1 Test Specification

9.2 Test Setup

Reference Ground Plane

9.3 Test Result

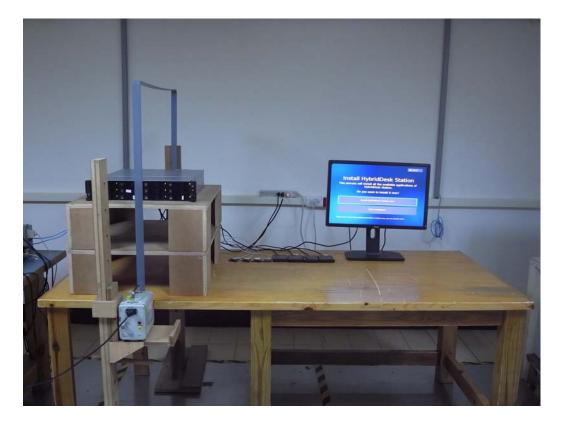
9.4 Test Setup Photo



10. Power Frequency Magnetic Field immunity

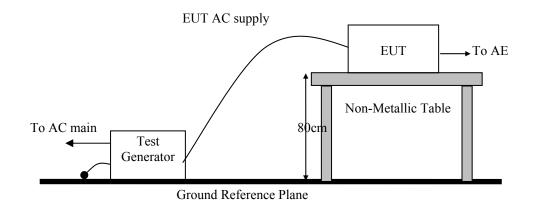
10.1 Test Specification

Port:	Enclosure
Basic Standard:	EN 61000-4-8/ IEC EN61000-4-8
	(details referred to Sec 1.2)
Test Level:	1A/m
Polarization:	X, Y, Z
Criteria:	A
Test Procedure	refer to ISL QA -T4-E-S12
Temperature:	25°C
Humidity:	56%


10.2 Test Setup

10.3 Test Result

10.4 Test Setup Photo



11. Voltage Dips, Short Interruption and Voltage Variation immunity

Port:	AC mains
Basic Standard:	EN 61000-4-11/ IEC EN61000-4-11
	(details referred to Sec 1.2)
Test Level:	>95% in 0.5 period
Criteria:	В
Test Level:	30% in 25 period
Criteria:	С
Test Level:	>95% in 250 period
Criteria:	С
Phase:	0°; 180°
Test intervals:	3 times with 10s each
Test Procedure	refer to ISL QA -T4-E-S13
Temperature:	25°C
Humidity:	56%

11.1 Test Specification

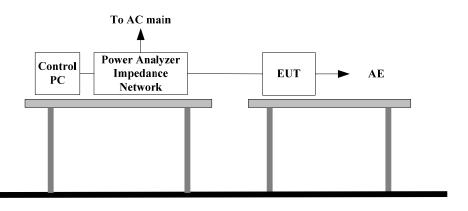
11.2 Test Setup

11.3 Test Result

11.4 Test Setup Photo

12. Harmonics

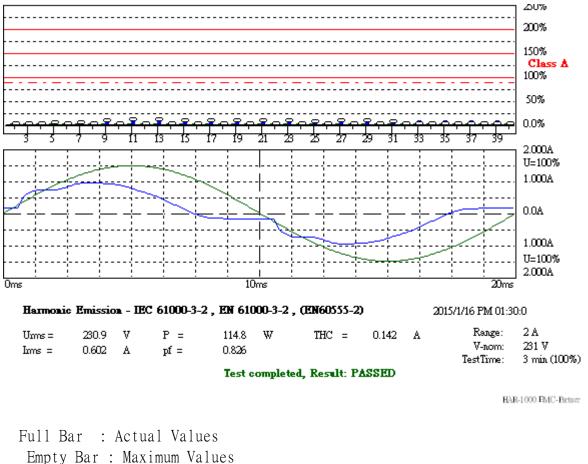
12.1 Test Specification


Port:	AC mains
Active Input Power:	>75W
Basic Standard:	EN61000-3-2/IEC 61000-3-2
	(details referred to Sec 1.2)
Test Duration:	2.5min
Class:	Α
Test Procedure	refer to ISL QA -T4-E-S14
Temperature:	19°C
Humidity:	68%

Test Procedure

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.

Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.


12.2 Test Setup

12.3 Test Result

12.4 Test Data

Blue : Current , Green : Voltage , Red : Failed

Measurement

```
Urms = 230.9V Freq = 50.000 Range: 2 A
Irms = 0.602A Ipk = 0.968A cf = 1.609
P = 114.8W S = 138.9VA pf = 0.826
THDi = 24.3 % THDu = 0.10 % Class A
Test - Time : 3min (100 %)
```

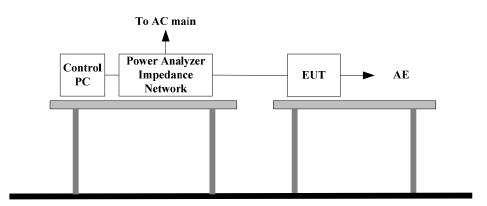
Test completed, Result: PASSED

					00		
Order	Freq.	Iavg	Iavg%L	Imax	Imax%L	Limit	Status
	[Hz]	[A]	[%]	[A]	[%]	[A]	
1	50	0.5832		0.5865			
2	100	0.0000	0.0000	0.0013	0.1243	1.0800	
3	150	0.1226	5.3288	0.1243	5.4029	2.3000	
4	200	0.0000	0.0000	0.0010	0.2271	0.4300	
5	250	0.0470	4.1186	0.0481	4.2189	1.1400	
6	300	0.0000	0.0000	0.0007	0.2441	0.3000	
7	350	0.0301	3.9122	0.0386	5.0096	0.7700	
8	400	0.0000	0.0000	0.0010	0.4246	0.2300	
9	450	0.0235	5.8656		5.9814	0.4000	
10	500		0.0000				
11	550	0.0270	8.1682	0.0313	9.4697		
12	600		0.0000			0.1533	
13	650	0.0192					
14	700	0.0000	0.0000				
15	750	0.0098					
16	800	0.0000					
17	850	0.0092					
18	900	0.0000	0.0000	0.0002	0.2388		
19	950	0.0080	6.7155	0.0087			
20	1000	0.0000	0.0000				
21	1050	0.0065	6.0807	0.0067	6.2663	0.1071	
22	1100	0.0000	0.0000		0.2919		
23	1150	0.0062					
24	1200	0.0000	0.0000	0.0002	0.3184		
25	1250	0.0041					
26	1300	0.0000					
27	1350	0.0054	6.4342	0.0057	6.8848	0.0833	
28	1400	0.0000	0.0000	0.0004	0.5573	0.0657	
29	1450	0.0051	6.5297	0.0055	7.0801	0.0776	
30	1500	0.0000	0.0000	0.0004	0.5971	0.0613	
31	1550	0.0041	5.6393	0.0054	7.4002	0.0726	
32	1600	0.0000	0.0000	0.0004	0.6369	0.0575	
33	1650	0.0004	0.5839	0.0050	7.3405	0.0682	
34	1700	0.0000	0.0000	0.0004	0.6767	0.0541	
35	1750	0.0000	0.0000	0.0045	7.0258	0.0643	
36	1800	0.0000	0.0000	0.0004	0.7165	0.0511	
37	1850	0.0000	0.0000	0.0045	7.4273	0.0608	
38	1900	0.0000	0.0000	0.0004	0.7563	0.0484	
39	1950	0.0000	0.0000	0.0043	7.4056	0.0577	
40	2000	0.0000	0.0000	0.0004	0.7961	0.0460	

12.5 Test Setup Photo

Refer to the Setup Photo for Voltage Fluctuations

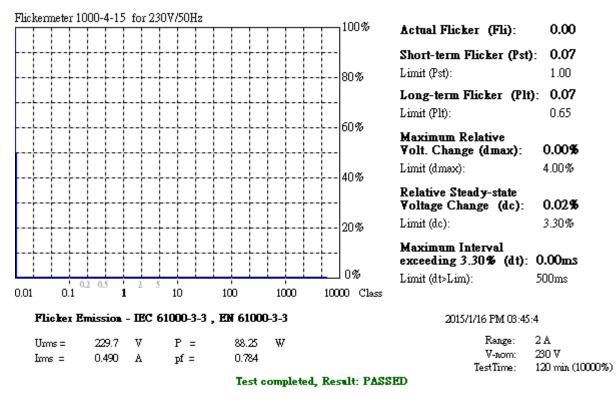
13. Voltage Fluctuations


13.1 Test Specification

-	
Port:	AC mains
Basic Standard:	EN61000-3-3/IEC61000-3-3
	(details referred to Sec 1.2)
Test Procedure	refer to ISL QA -T4-E-S14
Observation period:	For Pst 10min
_	For Plt 2 hours
Temperature:	19°C
Humidity:	68%

Test Procedure

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.


13.2 Test Setup

13.3 Test Result

13.4 Test Data

HAR-1000 EMC-Betuer

13.5 Test Setup Photo

14. Appendix

14.1 Appendix A: Test Equipment

14.1.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
CON01					Date	Date
Conduction	Coaxial Cable 1F-C1	HUBER SUHNER	RG214U	389942	11/13/2014	11/13/2015
Conduction	LISN 21	ROHDE & SCHWARZ	ENV216	101476	05/26/2014	05/26/2015
Conduction	LISN 22	ROHDE & SCHWARZ	ENV216	101478	05/26/2014	05/26/2015
Conduction	ISN T2 03	FCC	FCC-TLISN-T 2-02	20618	08/15/2014	08/15/2015
Conduction	ISN T4 05	FCC	FCC-TLISN-T 4-02	20619	08/15/2014	08/15/2015
Conduction	ISN T8 08	Teseq GmbH	ISN T800	36155	01/28/2014	01/28/2015
Conduction	ISN T8 06 (Shielding)	Teseq GmbH	ISN ST08	33999	08/15/2014	08/15/2015
Conduction	EMI Receiver 15	ROHDE & SCHWARZ	ESCI	101166	05/06/2014	05/06/2015

Location OATS01	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation	BILOG Antenna 10	Sumol Sciences	JB1	A013004-1	07/09/2014	07/09/2015
Radiation	Coaxial Cable 3F-10M	EMCI	CFD400-NL	ISL-R001	03/14/2014	03/14/2015
Radiation	EMI Receiver 13	ROHDE & SCHWARZ	ESCI	101015	04/11/2014	04/11/2015

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Chamber 01					Date	Date
Rad. above	Horn Antenna 11	ETS-LINDGR	3117	00114397	03/21/2014	03/21/2015
1Ghz		EN				
Rad. above	Horn Antenna 03	COM-Power	AH-826	08010	04/01/2013	04/01/2015
1Ghz						
Rad. above	Horn Antenna 05	Com-Power	AH-640	100A	01/09/2015	01/09/2016
1Ghz						
Rad. above	Microwave Cable-16	HUBER	SUCFLEX 104	345761/4	01/06/2015	01/06/2016
1Ghz		SUHNER				
Rad. above	Preamplifier 20	EMCI	EMC051845	980084	11/25/2014	11/25/2015
1Ghz	-					
Rad. above	Microwave Cable-19	HUBER	SUCFLEX 102	MY 2151/2	05/22/2014	05/22/2015
1Ghz		SUHNER				
Rad. above	Preamplifier 22	EMCI	EMC184045	980124	04/09/2014	04/09/2015
1Ghz						
Rad. above	Spectrum Analyzer 23	ROHDE &	FSU43	101255	11/07/2014	11/07/2015
1Ghz	-	SCHWARZ				

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
EN61K-3-2/3	DC Burn-In Load 02	D-RAM	DBS-2100	2100-910027	N/A	N/A
EN61K-3-2/3	Harmonic/Flicker Test System 03	EMC Partner	HARMONICS -1000	178	03/21/2014	03/21/2015
EN61K-4-,4,5, 8,11	TRANSIENT 2000 01	EMC Partner	TRANSIENT- 2000	950	05/08/2014	05/08/2015
EN61K-4-2	ESD GUN 11	TESEQ	NSG 438	1278	09/18/2014	09/18/2015
EN61K-4-3	BILOG Antenna 06	Schaffner	CBL6112B	2754	N/A	N/A
EN61K-4-3	Amplifier 80Mz~1GHz 250W	AR	250W1000A	312494	N/A	N/A
EN61K-4-3	Amplifier 800MHz~3.0GHz 60W	AR	60S1G3	312762	N/A	N/A
EN61K-4-3	Broadband coupler 10K~220Mhz	Amplifier Research	DC2500	19810	N/A	N/A
EN61K-4-3	Broadband Coupler 80M~1GHz	Amplifier Research	DC6180	20364	N/A	N/A
EN61K-4-3	Broadband Coupler 1~4GHz	Werlatone	C5291	6516	N/A	N/A
EN61K-4-3	Coaxial Cable Chmb 04-3M-2	Belden	RG-8/U	Chmb 04-3M-2	N/A	N/A
EN61K-4-3	Signal Generator 09	ROHDE& SCHWARZ	SMB100A	106542	07/09/2014	07/09/2015
EN61K-4-4	Digital Oscilloscope	Tektronix	TDS 684A	B010761	N/A	N/A
EN61K-4-4	EFT Clamp	Precision	1604242	CNEFT1000-1 03	N/A	N/A
EN61K-4-5	CDN-UTP8 01	EMC Partner	CDN-UTP8	032	04/11/2014	04/11/2015
EN61K-4-5	SURGE-TESTER 01	EMC Partner	MIG0603IN3	778	04/09/2014	04/09/2015
EN61K-4-6	Conducted Immunity Test System 03	Frankonia	CIT-10/75	126B1151	11/10/2014	11/10/2015
EN61K-4-6	Attenuator 6dB	EPX	ECA80-6-1-N M-NF	10022601	N/A	N/A
EN61K-4-6	CDN M2+M3	Frankonia	M2+M3	A3011016	08/13/2014	08/13/2015
EN61K-4-6	CDN T2 01	Frankonia	T2	A3010003	08/13/2014	08/13/2015
EN61K-4-6	CDN T4 05	FCC Inc.	FCC-801-T4-R J45	08020	09/16/2014	09/16/2015
EN61K-4-6	CDN T8 01	FCC Inc.	FCC-801-T8-R J45	08021	09/16/2014	09/16/2015
EN61K-4-6	CDN RJ45/S 01	Frankonia	CDN-RJ45/S	A3150047	10/28/2014	10/28/2015
EN61K-4-6	EM-Clamp 01	FCC		539	N/A	N/A
EN61K-4-6	Coaxial Cable 4-6 01-1	Harbour Industries		4-6 01-1	N/A	N/A
CISPR 13, Antenna	Signal Generator 02	НР	8648B	3642U01040	09/17/2014	09/17/2015
EN61K-4-8	Magnetic Field Antenna	Precision	TRAIZ44B	MF1000-23	N/A	N/A

PS: N/A => The equipment does not need calibration.

Test Item	Filename	Version
EN61000-3-2	EMC Partner	4.20
EN61000-3-3	EMC Partner	4.20
EN61000-4-2	N/A	
EN61000-4-3	i2	4.130102g
EN61000-4-4	EMC Partner	1.79
EN61000-4-5	EMC Partner	1.82
EN61000-4-6	EMC Partner	1.12
EN61000-4-8	EMC Partner	1.79
EN61000-4-11	EMC Partner	1.79

14.1.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Site	Filename	Version	Issue Date
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013

14.2 Appendix B: Uncertainty of Measurement

The measurement uncertainty refers to CISPR 16-4-2:2011. The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 01> AMN: ±3.28dB ISN T2: ±3.50dB ISN T4: ±3.51dB ISN T8: ±3.51dB <OATS 01 (10M)> Horizontal 30MHz~200MHz: ±3.38dB 200MHz~1000MHz: ±4.25dB Vertical 30MHz~200MHz: ±4.15dB 200MHz~1000MHz: ±4.26dB

<Chamber 01 (3M)> 1GHz~6GHz: ±4.88dB 6GHz~18GHz: ±5.15dB 18GHz~26.5GHz: ±4.34dB 18GHz~26.5GHz: ±4.38dB

<Immunity 01>

Test item	Uncertainty	Test item	Uncertainty
EN61000-4-2 (ESD)		EN61000-4-5 (Surge)	
Rise time tr	$\leq 15\%$	Time	± 3.7%
Peak current Ip	$\leq 6.3\%$	Voltage	± 3.9%
Current at 30 ns	$\leq 6.3\%$	Current	± 2.5%
Current at 60 ns	$\leq 6.3\%$	EN61000-4-6 (CS)	
EN61000-4-3 (RS)	±2.19dB	CDN	± 1.36dB
EN61000-4-4 (EFT)		EM Clamp	± 3.19dB
Voltage rise time (tr)	$\pm 6.2\%$	EN61000-4-8 (Magnetic)	±4.0%
Peak voltage value(VP)	$\pm 8.6\%$	EN61000-4-11 (Dips)	
Voltage pulse width (tw)	± 5.9%	Time	± 2.0%
		Voltage	± 1.7%
		Current	± 1.3%

Test item	Uncertainty	Test item	Uncertainty
EN61000-3-2 (Harmonics)	± 3.98%	EN61000-3-3 (Fluctuations and Flicker)	± 3.98 %

14.3 Appendix C: Photographs of EUT

Please refer to the File of ISL-13LE459P-R3