# 2.4GHz Outdoor Router User Manual

**USER MANUAL 2.0.1** 

© 2011

## **Table of Contents**

| 1.Terminology                                              | 4  |
|------------------------------------------------------------|----|
| 2.Introduction                                             | 6  |
| 2.1 package content                                        | 6  |
| 2.2 product features                                       | 6  |
| 2.3 front panel description                                | 7  |
| 2.4 rear panel description                                 | 8  |
| 3. Installation                                            | 8  |
| 3.1 Hardware Installation                                  | 9  |
| 3.1.1 Appearance and Interface Introduction                | 9  |
| 3.1.2 Hardware installation steps                          | 11 |
| 3.2 Software Installation                                  | 11 |
| 4. Software configuration                                  | 12 |
| 4.1 Prepare your PC to configure the WLAN Broadband Router | 14 |
| 4.2 Connect to the WLAN Broadband Router                   | 15 |
| 4.3 Management and configuration on the Outdoor Router     | 17 |
| 4.3.1 Wizard                                               | 17 |
| 4.3.2 Operation Mode                                       | 24 |
| 4.3.3 Internet Settings                                    | 26 |
| 4.3.3.1 LAN                                                | 28 |
| 4.3.3.2 VPN Passthrough                                    | 30 |
| 4.3.4 Wireless Settings                                    | 30 |
| 4.3.4.1 Basic                                              | 31 |
| 4.3.4.2 Advanced                                           | 33 |
| 4.3.4.3 Security                                           | 33 |
| 4.3.4.4 WPS                                                | 41 |
| 4.3.5Administration                                        | 42 |
| 4.3.5.1 Management                                         | 42 |
| 4.3.5.2 Upload Firmware                                    | 44 |
| 4.3.5.3 Settings Management                                | 45 |
| 4.3.5.4 Status                                             | 47 |
| 4.3.5.5 System Log                                         | 47 |
| 4.4 Configuration Examples                                 | 49 |
| 4.4.1 Example one – PPPoE on the WAN                       | 49 |
| 4.4.2 Example two – fixed IP on the WAN                    | 51 |
| 4.4.3 Example three -set WLAN to be WAN as WiFi Client     | 52 |
| 5. FREQUENTLY ASKED QUESTIONS (FAQ)                        | 56 |

| 5.1 What and how to find my PC's IP and MAC address?         | 61 |
|--------------------------------------------------------------|----|
| 5.2 What is Wireless LAN?                                    | 61 |
| 5.3 What are ISM bands?                                      | 61 |
| 5.4 How does wireless networking work?                       | 62 |
| 5.5 What is BSSID?                                           | 62 |
| 5.6 What is ESSID?                                           | 63 |
| 5.7 What are potential factors that may causes interference? | 63 |
| 5.8 What are the Open System and Shared Key authentications? | 63 |
| 5.9 What is WEP?                                             | 64 |
| 5.10 What is Fragment Threshold?                             | 64 |
| 5.11 What is RTS (Request to Send) Threshold?                | 65 |
| 5.12 What is Beacon Interval?                                | 65 |
| 5.13 What is Preamble Type?                                  | 65 |
| 5.14 What is SSID Broadcast?                                 | 66 |
| 5.15 What is Wi-Fi Protected Access (WPA)?                   | 66 |
| 5.16 What is WPA2?                                           | 66 |
| 5.17 What is 802.1x Authentication?                          | 66 |
| 5.18 What is Temporal Key Integrity Protocol (TKIP)?         | 67 |
| 5.19 What is Advanced Encryption Standard (AES)?             | 67 |
| 5.20 What is Inter-Access Point Protocol (IAPP)?             | 67 |
| 5.21 What is Wireless Distribution System (WDS)?             | 67 |
| 5.22 What is Universal Plug and Play (uPNP)?                 | 67 |
| 5.23 What is Maximum Transmission Unit (MTU) Size?           | 68 |
| 5.24 What is Clone MAC Address?                              | 68 |
| 5.25 What is DDNS?                                           | 68 |
| 5.26 What is NTP Client?                                     | 68 |
| 5.27 What is VPN?                                            | 68 |
| 5.28 What is IPSEC?                                          | 68 |
| 5.29 What is WLAN Block Relay between Clients?               | 69 |
| 5.30 What is WMM?                                            | 69 |
| 5.31 What is WLAN ACK TIMEOUT?                               | 69 |
| 5.32 What is Modulation Coding Scheme (MCS)?                 | 69 |
| 5.33 What is Frame Aggregation?                              | 69 |
| 5.34 What is Guard Intervals (GI)?                           | 70 |

# 1.Terminology

| AES Advanced Encryption Standard  ANSI American National Standards Institute  AP Access Point  CCK Complementary Code Keying  CSMA/CA Carrier Sense Multiple Access/Collision Avoidance  CSMA/CD Carrier Sense Multiple Access/Collision Detection  DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  ESS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Key Exchange  IP Internet Rey Exchange  IP Internet Protocol  MAC Media Access Control  MDS Message Digest 5  NAT Network Address Translation  NT Network Termination  NT Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transfire Protocol  Transfire Protocol |         |                                                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------|--|
| ANSI American National Standards Institute  AP Access Point  CCK Complementary Code Keying  CSMA/CA Carrier Sense Multiple Access/Collision Avoidance  CSMA/CD Carrier Sense Multiple Access/Collision Detection  DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Termination  NT Network Termination  NT Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                       | 3DES    | Triple Data Encryption Standard                   |  |
| AP Access Point  CCK Complementary Code Keying  CSMA/CA Carrier Sense Multiple Access/Collision Avoidance  CSMA/CD Carrier Sense Multiple Access/Collision Detection  DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Termination  NT Network Termination  NT Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                   | AES     | Advanced Encryption Standard                      |  |
| CCK Complementary Code Keying  CSMA/CA Carrier Sense Multiple Access/Collision Avoidance  CSMA/CD Carrier Sense Multiple Access/Collision Detection  DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  Service Set Identification  TCP Transmission Control Protocol                                                                                                                         | ANSI    | American National Standards Institute             |  |
| CSMA/CA Carrier Sense Multiple Access/Collision Avoidance CSMA/CD Carrier Sense Multiple Access/Collision Detection DDNS Dynamic Domain Name Server DH Difffe-Hellman Algorithm DHCP Dynamic Host Configuration Protocol DSSS Direct Sequence Spread Spectrum EAP Extensible Authentication Protocol ESP Encapsulating Security Payload FCC Federal Communications Commission FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers IKE Internet Key Exchange IP Internet Protocol ISM Industrial, Scientific and Medical LAN Local Area Network MAC Media Access Control MD5 Message Digest 5 NAT Network Address Translation NT Network Time Protocol PPTP Point to Point Tunneling Protocol PSD Power Spectral Density RF Radio Frequency SHA1 Secure Hash Algorithm SNR Signal to Noise Ratio SSID Service Set Identification TCP Transmission Control Protocol                                                                                                                                                                           | AP      | Access Point                                      |  |
| CSMA/CD Carrier Sense Multiple Access/Collision Detection  DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NT Network Time Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                              | CCK     | Complementary Code Keying                         |  |
| DDNS Dynamic Domain Name Server  DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MIDS Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SCID Transmission Control Protocol                                                                                                                                                                                                                                                                               | CSMA/CA | Carrier Sense Multiple Access/Collision Avoidance |  |
| DH Diffie-Hellman Algorithm  DHCP Dynamic Host Configuration Protocol  DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MID5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                       | CSMA/CD | Carrier Sense Multiple Access/Collision Detection |  |
| DHCP Dynamic Host Configuration Protocol DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol ESP Encapsulating Security Payload FCC Federal Communications Commission  FTP File Transfer Protocol IEEE Institute of Electrical and Electronic Engineers IKE Internet Key Exchange IP Internet Protocol ISM Industrial, Scientific and Medical LAN Local Area Network MAC Media Access Control MDS Message Digest 5 NAT Network Address Translation NT Network Termination NT Network Time Protocol PPTP Point to Point Tunneling Protocol PSD Power Spectral Density RF Radio Frequency SHA1 Secure Hash Algorithm SNR Signal to Noise Ratio SSID Service Set Identification TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                   | DDNS    | Dynamic Domain Name Server                        |  |
| DSSS Direct Sequence Spread Spectrum  EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                             | DH      | Diffie-Hellman Algorithm                          |  |
| EAP Extensible Authentication Protocol  ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                              | DHCP    | Dynamic Host Configuration Protocol               |  |
| ESP Encapsulating Security Payload  FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                      | DSSS    | Direct Sequence Spread Spectrum                   |  |
| FCC Federal Communications Commission  FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EAP     | Extensible Authentication Protocol                |  |
| FTP File Transfer Protocol  IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESP     | Encapsulating Security Payload                    |  |
| IEEE Institute of Electrical and Electronic Engineers  IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FCC     | Federal Communications Commission                 |  |
| IKE Internet Key Exchange  IP Internet Protocol  ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FTP     | File Transfer Protocol                            |  |
| IP Internet Protocol ISM Industrial, Scientific and Medical LAN Local Area Network MAC Media Access Control MD5 Message Digest 5 NAT Network Address Translation NT Network Termination NTP Network Time Protocol PPTP Point to Point Tunneling Protocol PSD Power Spectral Density RF Radio Frequency SHA1 Secure Hash Algorithm SNR Signal to Noise Ratio SSID Service Set Identification TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IEEE    | Institute of Electrical and Electronic Engineers  |  |
| ISM Industrial, Scientific and Medical  LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IKE     | Internet Key Exchange                             |  |
| LAN Local Area Network  MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IP      | Internet Protocol                                 |  |
| MAC Media Access Control  MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISM     | Industrial, Scientific and Medical                |  |
| MD5 Message Digest 5  NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAN     | Local Area Network                                |  |
| NAT Network Address Translation  NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAC     | Media Access Control                              |  |
| NT Network Termination  NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MD5     | Message Digest 5                                  |  |
| NTP Network Time Protocol  PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NAT     | Network Address Translation                       |  |
| PPTP Point to Point Tunneling Protocol  PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NT      | Network Termination                               |  |
| PSD Power Spectral Density  RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NTP     | Network Time Protocol                             |  |
| RF Radio Frequency  SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PPTP    | Point to Point Tunneling Protocol                 |  |
| SHA1 Secure Hash Algorithm  SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PSD     | Power Spectral Density                            |  |
| SNR Signal to Noise Ratio  SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RF      | Radio Frequency                                   |  |
| SSID Service Set Identification  TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHA1    | Secure Hash Algorithm                             |  |
| TCP Transmission Control Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SNR     | Signal to Noise Ratio                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SSID    | Service Set Identification                        |  |
| TETP Trivial File Transfer Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCP     | Transmission Control Protocol                     |  |
| 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TFTP    | Trivial File Transfer Protocol                    |  |

| TKIP | Temporal Key Integrity Protocol |
|------|---------------------------------|
| UPNP | Universal Plug and Play         |
| VPN  | Virtual Private Network         |
| WDS  | Wireless Distribution System    |
| WEP  | Wired Equivalent Privacy        |
| WLAN | Wireless Local Area Network     |
| WPA  | Wi-Fi Protected Access          |

### 2.Introduction

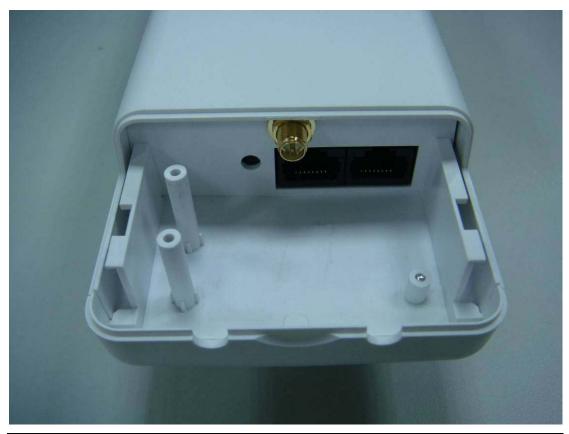
The Outdoor Router is an affordable IEEE 802.11b/g /n specifications of Outdoor Router solution; setting SOHO and enterprise standard for high performance, secure, manageable and reliable WLAN. This document describes the steps required for the initial IP address assign and other configuration of the outdoor router. The description includes the implementation of the above steps.

## 2.1 package content

The package of the WLAN Broadband Router includes the following items,

- ✓ Outdoor Router
- ✓ DC 12V Power Adapter
- ✓ Documentation CD
- ✓ POE Injector
- ✓ Tie

## 2.2 product features


- Compatible with IEEE 802.11n Specifications provides wireless speed up to 150Mbps data rate.
- Compatible with IEEE 802.11g standard to provide wireless speeds of 54Mbps data rate.
- Compatible with IEEE 802.11b standard to provide wireless speeds of 11Mbps data rate.
- Maximizes the performance and ideal for media-centric applications like streaming video, gaming and Voice over IP technology.
- Support various operation (Bridge/Gateway/Ethernet Converter) modes between wireless and wired Ethernet interfaces.
- Supports WPS, 64-bit and 128-bit WEP, WPA, WPA2 encryption to protect the wireless data transmission.
- Support TKIP/AES/TKIPAES of WPA algorithms.
- Support IEEE 802.3x full duplex flow control on 10/100M Ethernet interface.
- > Support DHCP server to provide clients auto IP addresses assignment.
- Support DHCP client, static IP, PPPoE, L2TP and PPTP of WAN Interface.
- Supports firewall security with port filtering, IP filtering, MAC filtering, port forwarding, DMZ hosting and URL filtering functions.
- > Support WEB based management and configuration.
- Support System Log.
- Support Dynamic DNS
- Support NTP



# 2.3 front panel description

| LED Indicator     | State    | Description                                             |
|-------------------|----------|---------------------------------------------------------|
| 1. PWR LED        | ON       | The WLAN Broadband Router is powered ON.                |
| 1.1 WK LED        | Off      | The WLAN Broadband Router is powered Off.               |
|                   | Flashing | Data is transmitting or receiving on the wireless.      |
| 2. WLAN LED       | ON       | Wireless Radio ON.                                      |
|                   | Off      | Wireless Radio Off.                                     |
|                   | Flashing | Data is transmitting or receiving on the WAN interface. |
| 3. WAN LED<br>ACT | ON       | Port linked.                                            |
|                   | Off      | No link.                                                |
|                   | Flashing | Data is transmitting or receiving on the LAN interface. |
| 4. LAN LED ACT    | ON       | Port linked.                                            |
|                   | Off      | No link.                                                |

# 2.4 rear panel description



| Interfaces        | Description                                                                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMA connector     | For external antenna. You can use the SMA connector to connect with 2.4GHz external antenna.                                                                                 |
| Secondary(Middle) | The RJ-45 sockets allow LAN connection through Category 5 cables. Support auto-sensing on 10/100M speed and half/ full duplex; comply with IEEE 802.3/ 802.3u respectively.  |
| Main(Right)       | The RJ-45 socket allows WAN connection through a Category 5 cable. Support auto-sensing on 10/100M speed and half/ full duplex; comply with IEEE 802.3/ 802.3u respectively. |

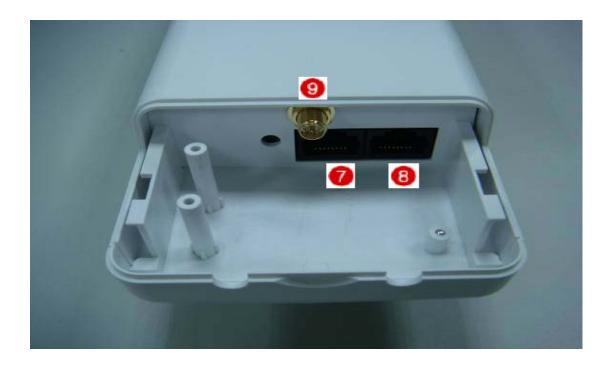
## 3. Installation

- 3.1 Hardware Installation
- 3.1.1 Appearance and Interface Introduction

Notes: The product shot is for reference only please refer to physical product.

#### 1.LED Panel




- 2. Waterproof Sliding Door
- 3. Pass trough Ethernet cable from this cable
- 4. Push this button to remove upper housing



- 5. Wall Mount
- 6. Pole Mount



- 7. Secondary port with POE
- 8. Main port
- 9. SMA connector for external antenna



# **3.1.2** Hardware installation steps



Step2: Pass through Ethernet cable from the hole, insert the cable to Secondary port.

Note: RJ-45 8P8C Ethernet cable is required.



Step3: Install the upper housing and make sure the housing is well installed.

## 3.2 Software Installation



Step4:

Install POE Injector

DC: Insert adapter

POE: This hole is linked to Secondary port of the Outdoor Router with RJ-45.

LAN: This hole is linked to LAN side PC/Hub or Router/ADSL modem device with RJ-45



Step5: Complete the hardware installation as diagram at below



Notes: Use **Reset button** on POE injector. Push continually the reset button of POE injector about 5 ~ 10 seconds to reset the configuration parameters to factory defaults.



There is no software driver or utility installation needed, but only the configuration setting. Please refer to chapter 4 for software configuration.

Notice: It will take about 50 seconds to complete the boot up sequence after powered on the Outdoor Router; Power LED will be active, and after that the WLAN Activity LED will be flashing to show the WLAN interface is enabled and working now.

## 4. Software configuration

There are web based management and configuration functions allowing you to have the jobs done easily.

The Outdoor Router is delivered with the following factory default parameters on the Ethernet LAN interfaces.

Default IP Address: 192.168.1.200

Default IP subnet mask: 255.255.255.0

WEB login User Name: admin
WEB login Password: admin
Telnet login User Name: admin
Telnet login Password: admin

#### 4.1 Prepare your PC to configure the WLAN Broadband Router

#### For OS of Microsoft Windows 2000/XP:

- 1. Click the *Start* button and select Settings, then click *Control Panel*. The *Control Panel* window will appear.
- 2. Move mouse and double-click the right button on *Network and Dial-up Connections* icon. Move mouse and double-click the *Local Area Connection* icon. The *Local Area Connection* window will appear. Click *Properties* button in the *Local Area Connection* window.
- 3. Check the installed list of *Network Components*. If TCP/IP is not installed, click the *Add* button to install it; otherwise go to step 6.
- 4. Select *Protocol* in the *Network Component Type* dialog box and click *Add* button.
- 5. Select *TCP/IP* in *Microsoft of Select Network Protocol* dialog box then click OK button to install the TCP/IP protocol, it may need the Microsoft Windows CD to complete the installation. Close and go back to *Network* dialog box after the TCP/IP installation.
- 6. Select TCP/IP and click the properties button on the Network dialog box.
- 7. Select Specify an IP address and type in values as following example.
- ✓ IP Address: 192.168.1.1, any IP address within 192.168.1.1 to 192.168.1.254 is good to connect the Wireless LAN Access Point. Don't use 192.168.1.200
- ✓ IP Subnet Mask: 255.255.255.0
- 8. Click *OK* to complete the IP parameters setting.

#### For OS of Microsoft Windows Vista / 7:

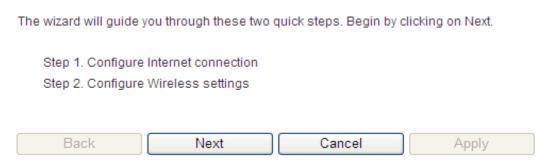
- 1. Click the *Start* button and select *Settings*, then click *Control Panel*. The *Control Panel* window will appear.
- 2. Move mouse and double-click the right button on *Network Connections* item. The *Network Connections* window will appear. Double click *Local Area Connection* icon, then User Account Control window shown. Right click Continue button to set properties.
- 3. In *Local Area Connection Properties* window, Choose *Networking* tab, move mouse and click *Internet Protocol Version 4 (TCP/IPv4)*, then click *Properties* button.
- 4. Move mouse and click *General* tab, Select *Specify an IP address* and type in values as following example.
- ✓ IP Address: 192.168.1.1,, any IP address within 192.168.1.1 to 192.168.1.254is good to connect the Wireless LAN Access Point. Don't use 192.168.1.200
- ✓ IP Subnet Mask: 255.255.255.0
- 5. Click OK to complete the IP parameters setting.

#### For OS of Microsoft Windows NT:

1. Click the *Start* button and select Settings, then click *Control Panel*. The *Control Panel* window will appear.

- 2. Move mouse and double-click the right button on Network icon. The Network window will appear. Click Protocol tab from the Network window.
- 3. Check the installed list of Network Protocol window. If TCP/IP is not installed, click the Add button to install it; otherwise go to step 6.
- 4. Select Protocol in the Network Component Type dialog box and click Add button.
- 5. Select *TCP/IP* in *Microsoft of Select Network Protocol* dialog box then click OK button to install the TCP/IP protocol, it may need the Microsoft Windows CD to complete the installation. Close and go back to *Network* dialog box after the TCP/IP installation.
- 6. Select TCP/IP and click the properties button on the Network dialog box.
- 7. Select Specify an IP address and type in values as following example.
- ✓ IP Address: 192.168.1.1, any IP address within 192.168.1.1 to 192.168.1.254 is good to connect the Wireless LAN Access Point. Don't use 192.168.1.200
- ✓ IP Subnet Mask: 255.255.255.0
- 8. Click *OK* to complete the IP parameters setting.

#### 4.2 Connect to the WLAN Broadband Router


Open a WEB browser, i.e. Microsoft Internet Explorer 6.1 SP1 or above, then enter 192.168.1.200 on the URL to connect the WLAN Broadband Router.

## 4.3 Management and configuration on the Outdoor Router

#### **4.3.1** Wizard

This Wizard page guides you to configure Internet connection and Wireless Settings quickly.

Step 1: configure Internet connection



Click *Next* button to next step for Internet connection settings. There are five options (DHCP, Static Mode, PPPOE, L2TP, PPTP) for Internet connection on WAN port.

#### a. DHCP (Auto Configure)



If you select **DHCP** option, please click *Next* button to jump at Step2.

## **b.** Static Mode (fixed IP)

If you select Static Mode (fixed IP), please fill in these fields on next page.

Step 1. Configure Internet Connection

WAN Connection Type: Static Mode (fixed IP) 

Static Mode

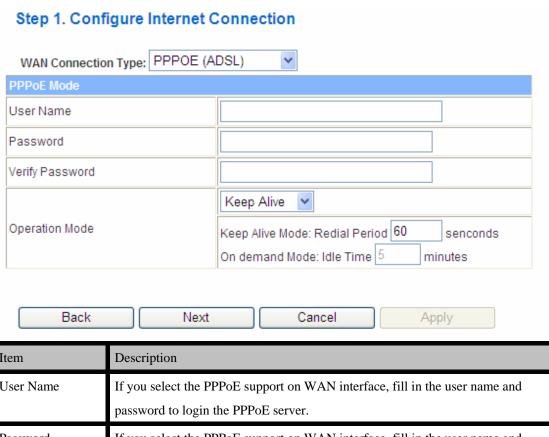
IP Address

Subnet Mask

Default Gateway

Primary DNS Server

Secondary DNS Server

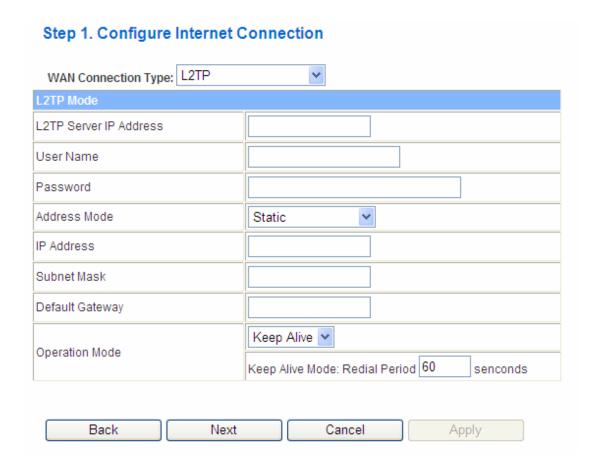

Back Next Cancel Apply

| Item            | Description                                                           |
|-----------------|-----------------------------------------------------------------------|
| IP Address      | Fill in the IP address for WAN interface.                             |
| Subnet Mask     | Fill in the subnet mask for WAN interface.                            |
| Default Gateway | Fill in the default gateway for WAN interface out going data packets. |
| Primary DNS     | Fill in the IP address of Domain Name Server 1.                       |
| Server          |                                                                       |
| Secondary DNS   | Fill in the IP address of Domain Name Server 2.                       |
| Server          |                                                                       |

When you finish these settings, then click *Next* button to jump at Step2.

#### c. PPPOE Connection

If you select **PPPOE**, please fill in these fields on next page.




| Item            | Description                                                                   |
|-----------------|-------------------------------------------------------------------------------|
| User Name       | If you select the PPPoE support on WAN interface, fill in the user name and   |
|                 | password to login the PPPoE server.                                           |
| Password        | If you select the PPPoE support on WAN interface, fill in the user name and   |
|                 | password to login the PPPoE server.                                           |
| Verify Password | Fill in the password again for verification.                                  |
| Operation Mode  | Keep Alive: Keep the PPPoE connection all the time. Please also configure the |
|                 | Redial Period field. On Demand: Please configure the Idle Time field. When    |
|                 | time is up, the PPPoE connection will disconnect. The connection will         |
|                 | re-connect when any outgoing packet arise. Manual: Let user connect the       |
|                 | PPPoE connection manually.                                                    |

When you finish these settings, then click *Next* button to jump at Step2.

#### d. L2TP

f you select L2TP, please fill in these fields on next page.



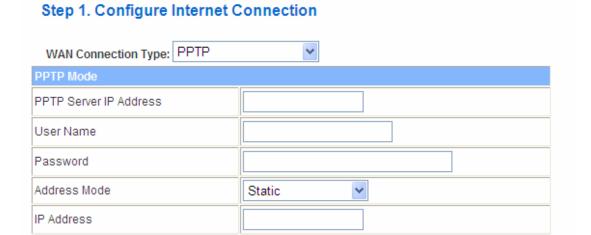
| Item            | Description                                                                       |
|-----------------|-----------------------------------------------------------------------------------|
| L2TP Server IP  | Allow user to make a tunnel with remote site directly to secure the data          |
| Address         | transmission among the connection. User can use embedded L2TP client              |
|                 | supported by this router to make a VPN connection. If you select the L2TP         |
|                 | support on WAN interface, fill in the IP address for it.                          |
| User Name       | Fill in the user name and password to login the L2TP server.                      |
| Password        | Fill in the user name and password to login the L2TP server.                      |
| Address Mode    | Static: To configure the IP address information by manually, please fill in the   |
|                 | related setting at below. <b>Dynamic:</b> The option allows the machine to get IP |
|                 | address information automatically from DHCP server on WAN side.                   |
| IP Address      | Fill in the IP address for WAN interface.                                         |
| Subnet Mask     | Fill in the subnet mask for WAN interface.                                        |
| Default Gateway | Fill in the default gateway for WAN interface out going data packets.             |

Operation Mode Keep Alive: Keep the L2TP connection all the time. Please also configure the Redial Period field. Manual: Let user connect the L2TP connection manually.

When you finish these settings, then click *Next* button to jump at Step2.

## e. PPTPI

If you select **PPTP**, please fill in these fields on next page.


Item Description

Subnet Mask

Default Gateway

Operation Mode

Back



Keep Alive >

Next

Keep Alive Mode: Redial Period 60

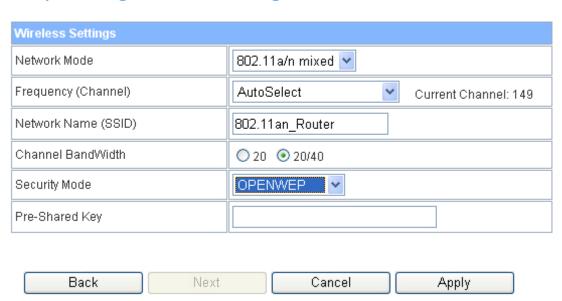
Cancel

Redial Period field. Manual: Let user connect the PPTP connection manually.

senconds

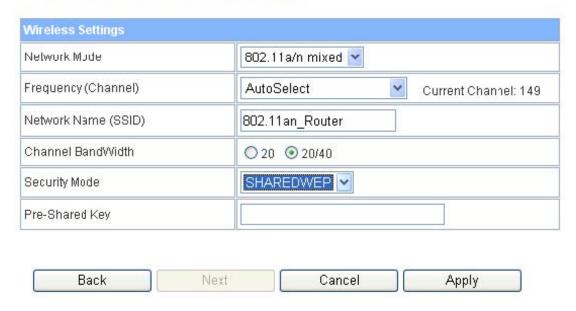
Apply

| Item                      | Description                                                                                                                                                                                                                                                                      |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PPTP Server IP<br>Address | Allow user to make a tunnel with remote site directly to secure the data transmission among the connection. User can use embedded PPTP client supported by this router to make a VPN connection. If you select the PPTP support on WAN interface, fill in the IP address for it. |
| User Name                 | Fill in the user name and password to login the PPTP server.                                                                                                                                                                                                                     |
| Password                  | Fill in the user name and password to login the PPTP server.                                                                                                                                                                                                                     |
|                           |                                                                                                                                                                                                                                                                                  |
| Address Mode              | <b>Static:</b> To configure the IP address information by manually, please fill in the related setting at below. <b>Dynamic:</b> The option allows the machine to get IP address information automatically from DHCP server on WAN side.                                         |
| Address Mode  IP Address  | related setting at below. <b>Dynamic:</b> The option allows the machine to get IP                                                                                                                                                                                                |
|                           | related setting at below. <b>Dynamic:</b> The option allows the machine to get IP address information automatically from DHCP server on WAN side.                                                                                                                                |
| IP Address                | related setting at below. <b>Dynamic:</b> The option allows the machine to get IP address information automatically from DHCP server on WAN side.  Fill in the IP address for WAN interface.                                                                                     |


## **Step 2: configure Wireless Settings**

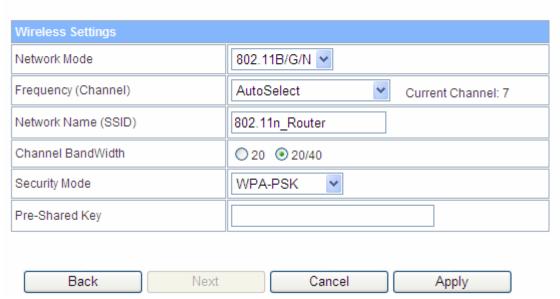
There are three options (Disable, WEP, WPA-PSK/WPA2-PSK) for Wireless security connection.

Step 2. Configure Wireless Settings Wireless Settings 802.11B/G/N 💌 Network Mode Frequency (Channel) AutoSelect v Current Channel: 7 Network Name (SSID) 802.11n\_Router Channel BandWidth 20 @ 20/40 Security Mode Disable Back Next Cancel Apply


#### **OPEN WEP**

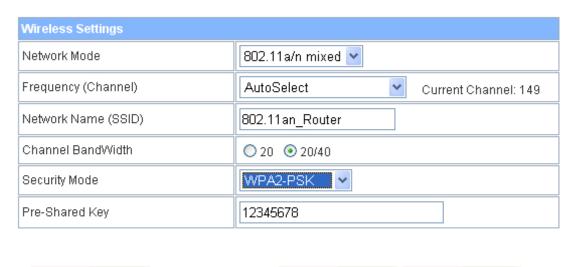
Step 2. Configure Wireless Settings

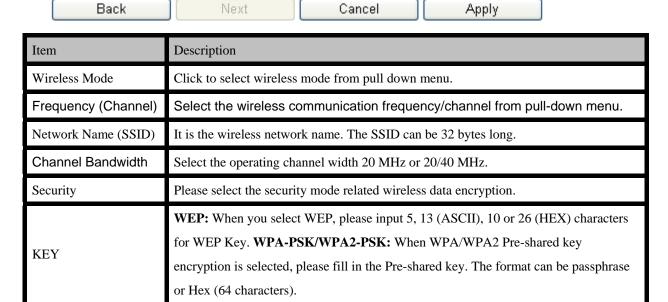



#### **SHAREDWEP**

## Step 2. Configure Wireless Settings



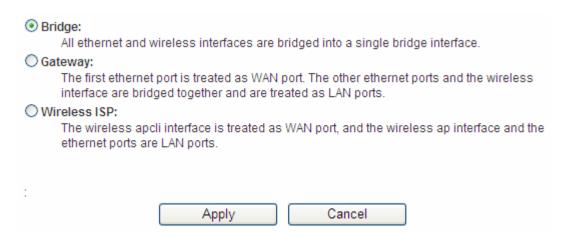

#### **WPA-PSK**


## Step 2. Configure Wireless Settings



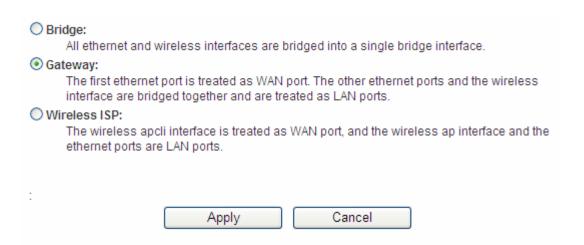
#### **WPA2-PSK**

#### Step 2. Configure Wireless Settings



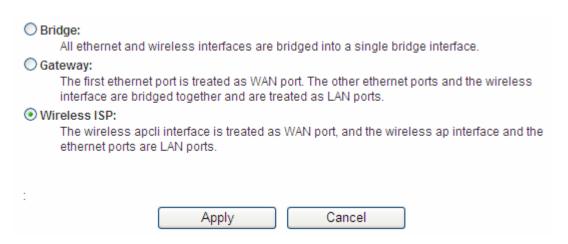



When you finish these settings, then click *Apply* button to save.


## **4.3.2 Operation Mode**

## a. Bridge:




The **Bridge** mode allows that all Ethernet and wireless interfaces are bridged into a single bridge interface.

## b. Gateway:



The **Gateway** mode allows that the first Ethernet port is treated as WAN port and the Ethernet port and the wireless interface are bridged together and are treated as LAN ports.

## c. Wireless ISP



The **Wireless ISP** mode allows that the wireless interface is treated as WAN port, and the Ethernet ports are LAN ports.

## .4.3.3 Internet Settings

## 4.3.3.1 LAN

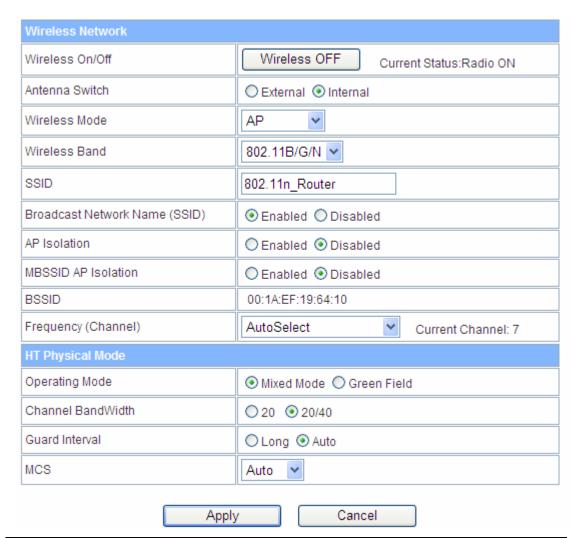
## Local Area Network (LAN) Settings


You may enable/disable networking functions and configure their parameters as your wish.

| LAN Setup            |                   |
|----------------------|-------------------|
| MAC Address          | 00:1A:EF:1D:F0:FA |
| IP Address           | 192.168.1.200     |
| Subnet Mask          | 255.255.255.0     |
| DHCP Type            | Disable 🕶         |
| Lease Time           | 86400             |
| 802.1d Spanning Tree | Disable 🕶         |
| LLTD                 | Disable 🕶         |
| IGMP Proxy           | Disable 💌         |
| UPNP                 | Disable 💌         |
| Router Advertisement | Disable 💌         |
| PPPoE Relay          | Disable 🕶         |
| DNS Proxy            | Disable 🕶         |
| App                  | ly Cancel         |

| Item        | Description                                                                           |
|-------------|---------------------------------------------------------------------------------------|
| MAC Clone   | Take NIC MAC address of PC on LAN side as the MAC address of WAN                      |
|             | interface.                                                                            |
| IP Address  | Fill in the IP address for WAN interface.                                             |
| Subnet Mask | Fill in the subnet mask for WAN interface.                                            |
| DHCP Type   | <b>Disable:</b> Disable DHCP server on LAN side. <b>Server:</b> Enable DHCP server on |
|             | LAN side.                                                                             |
| Lease Time  | Fill in the lease time of DHCP server function.                                       |
| LLTD        | Select enable or disable the Link Layer Topology Discover function from               |
|             | pull-down menu.                                                                       |

| LLTD       | Select enable or disable the Link Layer Topology Discover function from |  |
|------------|-------------------------------------------------------------------------|--|
|            | pull-down menu.                                                         |  |
| IGMP Proxy | Select enable or disable the IGMP proxy function from pull-down menu.   |  |
| UPNP       | Select enable or disable the UPnP protocol from pull-down menu.         |  |
| DNS Proxy  | Select enable or disable the DNS Proxy function from pull-down menu.    |  |


# 4.3.3.3 VPN Passthrough



| Item              | Description                                                                   |  |
|-------------------|-------------------------------------------------------------------------------|--|
| L2TP Passthrough  | Select enable or disable the L2TP pass-through function from pull-down menu.  |  |
| IPSec Passthrough | Select enable or disable the IPSec pass-through function from pull-down menu. |  |
| PPTP Passthrough  | Select enable or disable the PPTP pass-through function from pull-down menu.  |  |

## 4.3.4 Wireless Settings

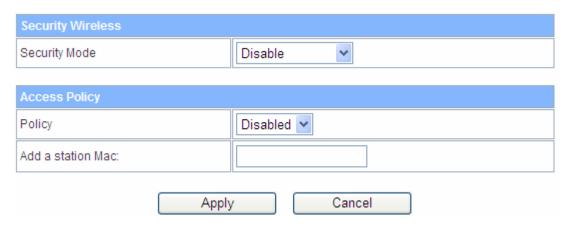
#### 4.3.4.1 Basic



| Item            | Description                                                                  |  |
|-----------------|------------------------------------------------------------------------------|--|
| Wireless On/Off | Click Wireless OFF button to turn off wireless RF radio. Click Wireless ON   |  |
|                 | button to turn on wireless RF radio.                                         |  |
| Antenna Switch  | Select Internal antenna or External antenna for using. The default is using  |  |
|                 | Internal antenna.                                                            |  |
| Wireless Mode   | Click to select wireless mode from pull down menu.                           |  |
| Wireless Band   | Click to select wireless band from pull down menu.                           |  |
| SSID            | It is the wireless network name. The SSID can be 32 bytes long. User can use |  |
|                 | the default SSID or change it.                                               |  |
| Broadcast       | Eachland Joshlatha CCID has also at four ation                               |  |
| Network Name    | Enable or disable the SSID broadcast function.                               |  |

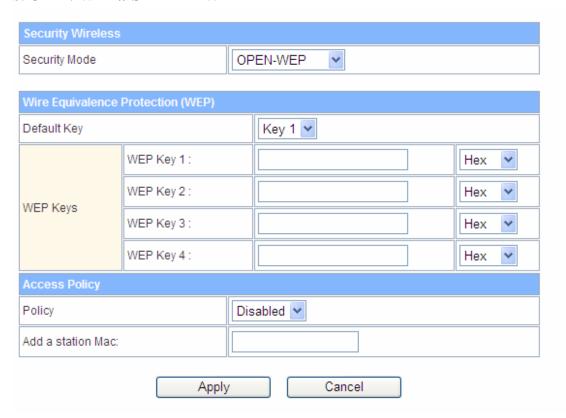
| (SSID)               |                                                                                                                                                                                                                                                                                            |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AP Isolation         | Wireless network is similar to the virtual local area network. All of the Wireless client devices can access each other completely. When you enable this function it will turn off connection between wireless clients. Only allows connection between wireless client and this AP router. |  |
| MBSSID AP Isolation  | Enable this function will turn off connection between clients with different MBSSID. Example: The client connected with BSSID 1. When enable this function, it will not connect with BSSID 2. Only can access between clients with SSID 1.                                                 |  |
| BSSID                | Show the MAC address of Wireless interface.                                                                                                                                                                                                                                                |  |
| Frequency (Channel)  | Select the wireless communication frequency/channel from pull-down menu.                                                                                                                                                                                                                   |  |
| Operating Mode       | Select "Mixed Mode" for 11b/g/n mode or "Green Field" for 11n mode.                                                                                                                                                                                                                        |  |
| Channel<br>BandWidth | Select the operating channel width 20 MHz or 20/40 MHz.                                                                                                                                                                                                                                    |  |
| Guard Interval       | Select "Long" or "Auto". Guard intervals are used to ensure that distinct transmissions do not interfere with one another. Only effect under Mixed Mode.                                                                                                                                   |  |
| MCS                  | Select 0~7 or "Auto" from pull down menu. The default is "Auto". Only effect under Mixed Mode.                                                                                                                                                                                             |  |

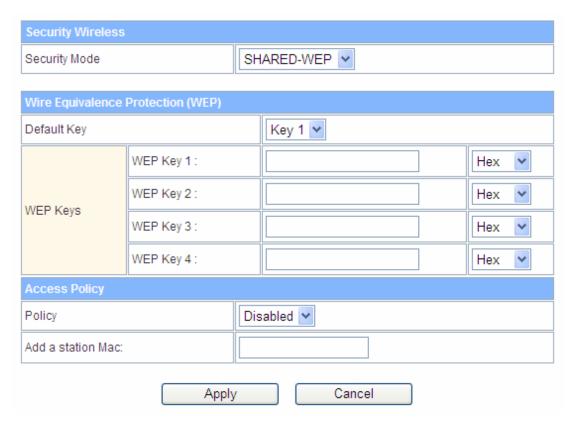
## **4.3.4.2 Advanced**


| Advanced Wireless       |                                       |  |  |  |
|-------------------------|---------------------------------------|--|--|--|
| B/G Protection Mode     | Auto 🕶                                |  |  |  |
| Beacon Interval         | 100 ms (range 20 - 999, default 100)  |  |  |  |
| Data Beacon Rate (DTIM) | 1 ms (range 1 - 255, default 1)       |  |  |  |
| Fragment Threshold      | 2346 (range 256 - 2346, default 2346) |  |  |  |
| RTS Threshold           | 2347 (range 1 - 2347, default 2347)   |  |  |  |
| TX Power                | 100 (range 1 - 100, default 100)      |  |  |  |
| Short Preamble          | ○ Enabled ⊙ Disabled                  |  |  |  |
| Short Slot              |                                       |  |  |  |
| Tx Burst                |                                       |  |  |  |
| Country Code            | US (United States)                    |  |  |  |
| Appl                    | y Cancel                              |  |  |  |

| Item                     | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beacon Interval          | Beacons are the packets sending by Access point to synchronize the wireless network. The beacon interval is the time interval between beacons sending by this unit in AP or AP+WDS operation. The default and recommended beacon interval is 100 milliseconds.                                                                                                                                      |
| Data Beacon<br>Rate(DTM) | This is the Delivery Traffic Indication Map. It is used to alert the clients that multicast and broadcast packets buffered at the AP will be transmitted immediately after the transmission of this beacon frame. You can change the value from 1 to 255. The AP will check the buffered data according to this value. For example, selecting "1" means to check the buffered data at every beacon. |
| Fragment<br>Threshold    | The fragmentation threshold determines the size at which packets are fragmented (sent as several pieces instead of as one block). Use a low setting in areas where communication is poor or where there is a great deal of radio interference. This function will help you to improve the network performance.                                                                                      |
| RTS Threshold            | The RTS threshold determines the packet size at which the radio issues a request to send (RTS) before sending the packet. A low RTS Threshold setting can be useful in areas where many client devices are associating with the                                                                                                                                                                     |

|                | device, or in areas where the clients are far apart and can detect only the device and not each other. You can enter a setting ranging from 0 to 2347 bytes.                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TX Power       | The default TX power is 100%. In case of shortening the distance and the coverage of the wireless network, input a smaller value to reduce the radio transmission power. For example, input 80 to apply 80% Tx power.                 |
| Short Preamble | Default: Disable. It is a performance parameter for 802.11 b/g mode and not supported by some of very early stage of 802.11b station cards. If there is no such kind of stations associated to this AP, you can enable this function. |
| Short Slot     | It is used to shorten the communication time between this AP and station.                                                                                                                                                             |
| TX Burst       | The device will try to send a serial of packages with single ACK reply from the clients. Enable this function to apply it.                                                                                                            |
| Country Code   | Select the country code for wireless from pull down menu.                                                                                                                                                                             |

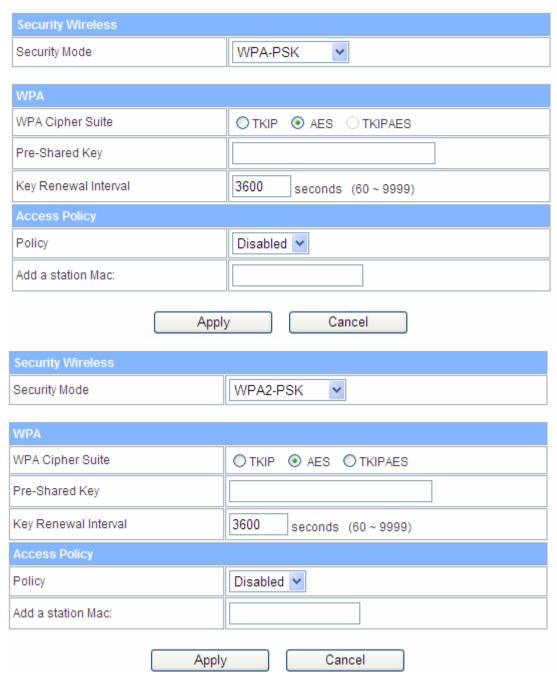

## 3.4.3.4.3 Security


#### a. Disable



f you set Security Mode to "**Disable**", the wireless data transmission will not include encryption to prevent from unauthorized access and monitoring.

#### b. OPEN-WEP // SHARED-WEP






If you set Security Mode to "**OPEN-WEP or SHARED-WEP**", please fill in the related configurations at below.

| Item           | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| Default Key    | Specify a Key number for effective.                                                         |
| WEP Keys (1~4) | When you select WEPAUTO, please input 5, 13 (ASCII), 10 or 26 (HEX) characters for WEP Key. |

#### c. WPA-PSK/WPA2PSK



If you set Security Mode to "WPAPSK or WPA2-PSK", please fill in the related configurations at below.

| Item                    | Description                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------|
| WPA Algorithms          | Select <b>TKIP</b> , <b>AES</b> , or <b>TKIPAES</b> for WPA algorithms.                           |
| Pass Phrase             | Please fill in a passphrase like 'test wpa 123', or a hexadecimal string like '65E4 E123 456 E1'. |
| Key Renewal<br>Interval | Please fill in a number for Group Key Renewal interval time.                                      |

## d. WPA-RADIUS

| Security Wireless    |                          |  |  |  |
|----------------------|--------------------------|--|--|--|
| Security Mode        | WPA-RADIUS 💌             |  |  |  |
|                      | ,                        |  |  |  |
| WPA                  |                          |  |  |  |
| WPA Cipher Suite     | OTKIP   AES OTKIPAES     |  |  |  |
| Key Renewal Interval | 3600 seconds (60 ~ 9999) |  |  |  |
| Radius Server        |                          |  |  |  |
| IP Address           |                          |  |  |  |
| Port                 | 1812                     |  |  |  |
| Shared Secret        |                          |  |  |  |
| Session Timeout      | 0                        |  |  |  |
| Idle Timeout         |                          |  |  |  |
| Access Policy        |                          |  |  |  |
| Policy               | Disabled 🕶               |  |  |  |
| Add a station Mac:   |                          |  |  |  |
| Appl                 | y Cancel                 |  |  |  |

| Item                    | Description                                                                      |  |  |
|-------------------------|----------------------------------------------------------------------------------|--|--|
| WPA Algorithms          | Select <b>TKIP</b> or <b>AES</b> for WPA algorithms.                             |  |  |
| Key Renewal<br>Interval | Please fill in a number for Group Key Renewal interval time.                     |  |  |
| IP Address              | Enter the RADIUS Server's IP Address provided by your ISP.                       |  |  |
| Port                    | Enter the RADIUS Server's port number provided by your ISP. (The Default is      |  |  |
|                         | 1812.)                                                                           |  |  |
| Shared Secret           | Enter the password that the Wireless Router shares with the RADIUS Server.       |  |  |
| Session Timeout         | Session timeout interval is for 802.1x re-authentication setting. Set to zero to |  |  |
|                         | disable 802.1x re-authentication service for each session. Session timeout       |  |  |
|                         | interval unit is second and must be larger than 60.                              |  |  |
| Idle Timeout            | Enter the idle timeout in the column.                                            |  |  |

## e.802.1X

| Security Wireless  |                    |
|--------------------|--------------------|
| Security Mode      | 802.1X             |
|                    | "                  |
| 802.1x WEP         |                    |
| WEP                | O Disable O Enable |
| Radius Server      |                    |
| IP Address         |                    |
| Port               | 1812               |
| Shared Secret      |                    |
| Session Timeout    | 0                  |
| Idle Timeout       |                    |
| Access Policy      |                    |
| Policy             | Disabled 🕶         |
| Add a station Mac: |                    |
| Appl               | y Cancel           |

| Item            | Description                                                                                                                                                                                                     |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WEP             | Select Disable or Enable For WEP                                                                                                                                                                                |  |
| IP Address      | Enter the RADIUS Server's IP Address provided by your ISP.                                                                                                                                                      |  |
| Port            | Enter the RADIUS Server's port number provided by your ISP. (The Default is 1812.)                                                                                                                              |  |
| Shared Secret   | Enter the password that the Wireless Router shares with the RADIUS Server.                                                                                                                                      |  |
| Session Timeout | Session timeout interval is for 802.1x re-authentication setting. Set to zero to disable 802.1x re-authentication service for each session. Session timeout interval unit is second and must be larger than 60. |  |
| Idle Timeout    | Enter the idle timeout in the column.                                                                                                                                                                           |  |

# f. Access Policy



| Item          | Description                                                                                  |  |  |
|---------------|----------------------------------------------------------------------------------------------|--|--|
| Policy        | Select the <b>Disabled</b> , <b>Allow</b> or <b>Reject</b> of drop down menu choose wireless |  |  |
|               | access control mode. This is a security control function; only those clients                 |  |  |
|               | registered in the access control list can link to this WLAN Broadband Router.                |  |  |
| Add a station | Eill in the MAC address of alignet to project a this AD provides a constiller.               |  |  |
| MAC           | Fill in the MAC address of client to register this AP router access capability.              |  |  |

## 4.3.4.4 WPS



| Item        | Description                                                                                                                                                                                             |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WPS         | Select <b>Enable</b> or <b>Disable</b> the Wi-Fi Protected Setup function. Then click <i>Apply</i> button to take effect function after change.                                                         |  |
| WPS Summary | After enabling the WPS function, if there is connection the WPS Summary will show related information and status.                                                                                       |  |
| AP PIN      | Here shows the AP's PIN code (Personal Identification Number) that the enrollee should enter the registrar's PIN code to make a connection. Click <i>Generate</i> button to generate a new AP PIN code. |  |
| Reset OOB   | Click <i>Reset OOB</i> button to reset WPS AP to the OOB (out-of-box) configuration.                                                                                                                    |  |
| WPS mode    | Select WPS mode. <b>PIN</b> : Personal Identification Number. <b>PBC</b> : Push Button Communication.                                                                                                   |  |
| PIN         | Input enrollee's PIN code to AP-registrar.                                                                                                                                                              |  |

# 4.3.5Administration

# 4.3.5.1 Management

|     | System N                          | lanage                                                                                             | lanagement                                              |         |                                                                |                        |     |          |  |  |
|-----|-----------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------|----------------------------------------------------------------|------------------------|-----|----------|--|--|
|     | You may configu<br>settings here. | You may configure administrator account and password, NTP settings, and Dynamic DNS settings here. |                                                         |         |                                                                |                        |     |          |  |  |
|     | Adminstrator Se                   | ettings                                                                                            |                                                         |         |                                                                |                        |     |          |  |  |
|     | Username                          |                                                                                                    |                                                         |         |                                                                |                        |     |          |  |  |
|     | Password                          |                                                                                                    |                                                         |         | =                                                              |                        |     |          |  |  |
|     |                                   |                                                                                                    | Apply                                                   | у       |                                                                | Cancel                 |     |          |  |  |
|     | NTP Settings                      |                                                                                                    |                                                         |         |                                                                |                        |     |          |  |  |
|     | Current Time                      |                                                                                                    |                                                         | Sat Jar | Sat Jan 1 06:15:55 UTC 2000 Sync with host                     |                        |     |          |  |  |
|     | Time Zone:                        |                                                                                                    |                                                         | (GMT-   | 11:/                                                           | 00) Midway Island, Sam | noa | <b>Y</b> |  |  |
|     | NTP Server                        |                                                                                                    |                                                         | ntp0.   | ex: time.nist.gov<br>ntp0.broad.mit.edu<br>time.stdtime.gov.tw |                        |     |          |  |  |
|     | NTP synchroniza                   | ition(hours                                                                                        | ;)                                                      |         |                                                                |                        |     |          |  |  |
|     |                                   |                                                                                                    | Apply                                                   | у       |                                                                | Cancel                 |     |          |  |  |
| Ite | em                                | Description                                                                                        | on                                                      |         |                                                                |                        |     |          |  |  |
| Us  | sername                           | Fill in the                                                                                        | Fill in the user name for web management login control. |         |                                                                |                        |     |          |  |  |
| Pa  | assword                           | Fill in the password for web management login control.                                             |                                                         |         |                                                                |                        |     |          |  |  |
| Cτ  | urrent Time                       | It shows the current time.                                                                         |                                                         |         |                                                                |                        |     |          |  |  |
| Ti  | ime Zone                          | Select the time zone in your country from pull-down menu                                           |                                                         |         |                                                                |                        |     |          |  |  |
| N'  | TP Server                         | Fill in N                                                                                          | Fill in NTP server IP address.                          |         |                                                                |                        |     |          |  |  |
|     | TP                                | Fill in a number to decide the synchronization frequency with NTP server.                          |                                                         |         |                                                                |                        |     |          |  |  |

| DDNS Settings        |          |
|----------------------|----------|
| Dynamic DNS Provider | None     |
| Account              |          |
| Password             |          |
| DDNS                 |          |
| Appl                 | y Cancel |

| Item                    | Description                                                                 |
|-------------------------|-----------------------------------------------------------------------------|
| Dynamic DNS<br>Provider | Click the drop down menu to pick up the right DDNS provider you registered. |
| Account                 | Fill in the account of DDNS you registered.                                 |
| Password                | Fill in the password of DDNS you registered.                                |
| DDNS                    | Fill in the domain name that you registered.                                |

# 4.3.5.2 Qos

| Qı    | Quality of Service Settings                |           |           |           |                  |     |        |
|-------|--------------------------------------------|-----------|-----------|-----------|------------------|-----|--------|
| You   | may setup rules to provide Quality of Serv | ice guara | antees fo | rspecific | applications.    |     |        |
|       |                                            |           |           |           |                  | _   |        |
|       |                                            |           |           |           |                  |     |        |
| QoS   | Setup                                      |           |           |           |                  |     |        |
| Quali | ty of Service                              | Enable    | ~         |           |                  |     |        |
| Uplin | k Speed (Kbps):                            |           |           |           |                  |     |        |
| Dowr  | nlink Speed (Kbps) :                       |           |           |           |                  |     |        |
| QoS   | Rules Setting                              |           |           |           |                  |     |        |
| Local | IP Address:                                |           |           |           |                  |     |        |
| Uplin | Uplink BandWidth (Kbps):                   |           |           |           |                  |     |        |
| Dowr  | nlink BandWidth (Kbps):                    |           |           |           |                  |     |        |
| App   | у                                          |           |           |           |                  |     |        |
| No.   | Local IP Address                           | Uplink    | BandWid   | th        | Downlink BandWie | dth | Select |

| Item             | Description                         |  |
|------------------|-------------------------------------|--|
| Uplink Speed     | Input uplink Maximum upload speed   |  |
| Downlink Speed   | Input downlink Maximum upload speed |  |
| Local IP Address | Fill in the local IP address        |  |
| Uplink Bandwidth | Fill limit upload bandwidth         |  |
| Downlink         | Fill limit downlink bandwidth       |  |
| Bandwidth        | Fill littlit downlink baridwidth    |  |

# 4.3.5.3 Upload Firmware

# Upgrade Firmware Upgrade the Device firmware to obtain new functionality. It takes about 1 minute to upload upgrade flash and be patient please. Caution! A corrupted image will hang up the system. Update Firmware Location:

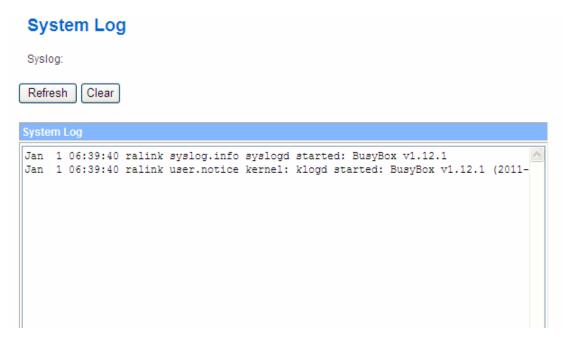
| Item     | Description                                                                           |  |
|----------|---------------------------------------------------------------------------------------|--|
| Location | Click the <i>Browse</i> button to select the new firmware image file on PC. And click |  |
|          | the <i>Apply</i> button to upgrade firmware.                                          |  |

# **4.3.5.4 Settings Management**

# 

| Item          | Description                                                                          |
|---------------|--------------------------------------------------------------------------------------|
| Export Button | Click <i>Export</i> button to export the current configuration to your PC.           |
| Settings file | Click <i>Browse</i> button to select the configuration file from your PC, then click |
| location      | <i>Import</i> button to update the configuration.                                    |
| Load Default  | Click the <i>Load Default</i> button to reset the configuration parameter to factory |
| Button        | defaults.                                                                            |

This page shows the current status and some basic settings of the device, includes system info, Internet Configurations and Local Network.


# 4.3.6.5 Status

This page shows the current status and some basic settings of the device, includes system info, Internet Configurations and Local Network.

| System Information   |                           |  |
|----------------------|---------------------------|--|
| Firmware Version     | 1.0.17-N_H                |  |
| System Up Time       | 6 hours, 27 mins, 19 secs |  |
| Operation Mode       | Gateway Mode              |  |
| Wireless Information |                           |  |
| Status               | Radio ON                  |  |
| Mode                 | AP                        |  |
| SSID                 | 802.11n_Router            |  |
| Channel              | 7                         |  |
| Encryption           | Disable                   |  |
| BSSID                | 00:1A:EF:19:64:10         |  |
| WAN Information      |                           |  |
| Connected Type       | DHCP                      |  |
| WAN IP Address       |                           |  |
| Subnet Mask          |                           |  |
| Default Gateway      |                           |  |
| DNS1                 |                           |  |
| DNS2                 |                           |  |
| MAC Address          | 00:1A:EF:19:64:12         |  |
| LAN Information      |                           |  |
| DHCP Server          | Enabled                   |  |
| LAN IP Address       | 192.168.1.200             |  |
| Subnet Mask          | 255.255.255.0             |  |
| MAC Address          | 00:1A:EF:19:64:10         |  |

# **4.3.6.6 System Log**

This page is used to view system logs



| Item    | Description                                                             |
|---------|-------------------------------------------------------------------------|
| Refresh | Click the <i>Refresh</i> button to refresh the log shown on the screen. |
| Clear   | Click the <i>Clear</i> button to clear the log display screen.          |

# **4.4 Configuration Examples**

# 4.4.1 Example one – PPPoE on the WAN

4Sales division of Company ABC likes to establish a WLAN network to support mobile communication

on sales' Notebook PCs. MIS engineer collects information and plans the WLAN Broadband Router implementation by the following configuration.

## $W\!AN\,configuration. \texttt{PPPoE}$

| User Name | User123     |
|-----------|-------------|
| Password  | Password123 |

Note: User Name and password that ISP provided.

#### LAN configuration:

| IP Address        | 10.10.10.254                |
|-------------------|-----------------------------|
| Subnet Mask       | 255.255.255.0               |
| DHCP Client Range | 10.10.10.100 - 10.10.10.200 |

## WLAN configuration:

| SSID           | AP         |
|----------------|------------|
| Channel Number | AutoSelect |

#### 1. Configure the WAN interface:

Open "Wide Area Network (WAN) Settings" page, select PPPoE then enter the User Name "user123" and Password "password123", the password is encrypted to display on the screen.

Press "Apply" button to confirm the configuration setting.

# Local Area Network (LAN) Settings

You may enable/disable networking functions and configure their parameters as your wish.

| LAN Setup            |                   |  |
|----------------------|-------------------|--|
| Hostname             | AP                |  |
| IP Address           | 10.10.10.254      |  |
| Subnet Mask          | 255.255.255.0     |  |
| LAN 2                | ○ Enable          |  |
| LAN2 IP Address      |                   |  |
| LAN2 Subnet Mask     |                   |  |
| MAC Address          | 00:1A:EF:0E:63:F3 |  |
| DHCP Type            | Server 🕶          |  |
| Start IP Address     | 10.10.10.100      |  |
| End IP Address       | 10.10.10.200      |  |
| Subnet Mask          | 255.255.255.0     |  |
| Primary DNS Server   | 10.10.10.254      |  |
| Secondary DNS Server | 0.0.0.0           |  |
| Default Gateway      | 10.10.10.254      |  |

## 2. Configure the WLAN interface:

Open "Basic Wireless Settings" page, enter the SSID "AP", Channel Number "AutoSelect".

Press "Apply" button to confirm the configuration setting.

| Radio On/Off                  | RADIO OFF          |     |
|-------------------------------|--------------------|-----|
| Network Mode                  | 11b/g/n mixed mode |     |
| Network Name(SSID)            | AP Hidden Isolate  | d 🔲 |
| Multiple SSID1                | Hidden Isolate     | d 🔲 |
| Multiple SSID2                | Hidden ☐ Isolate   | d 🔲 |
| Multiple SSID3                | Hidden 🗌 Isolate   | d 🔲 |
| Multiple SSID4                | Hidden Isolate     | d 🔲 |
| Multiple SSID5                | Hidden I Isolate   | d 🔲 |
| Multiple SSID6                | Hidden I Isolate   | d 🔲 |
| Multiple SSID7                | Hidden ☐ Isolate   | d 🔲 |
| Broadcast Network Name (SSID) |                    |     |
| AP Isolation                  | ○ Enable           |     |
| MBSSID AP Isolation           | ○ Enable           |     |
| BSSID                         | 00:1A:EF:0E:63:F3  |     |
| Frequency (Channel)           | AutoSelect ✓       |     |

# 4.4.2 Example two – fixed IP on the WAN

Company ABC likes to establish a WLAN network to support mobile communication on all employees' Notebook PCs. MIS engineer collects information and plans the WLAN Broadband Router implementation by the following configuration.

WAN configuration: Fixed IP

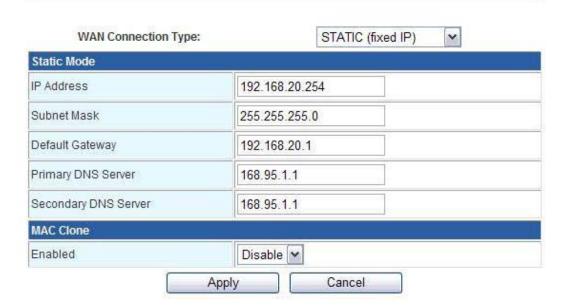
| IP Address          | 192.168.20.254 |
|---------------------|----------------|
| Subnet Mask         | 255.255.255.0  |
| Default Gateway     | 192.168.20.1   |
| Primary DNS Address | 168.95.1.1     |

## $L\!AN\ configuration:$

| IP Address        | 10.10.10.254                |
|-------------------|-----------------------------|
| Subnet Mask       | 255.255.255.0               |
| DHCP Client Range | 10.10.10.100 - 10.10.10.200 |

## ${\it WLAN\ configuration:}$

| SSID           | AP         |
|----------------|------------|
| Channel Number | AutoSelect |


#### 1. Configure the WAN interface:

Open "Wide Area Network (WAN) Settings" page, select STATIC(fixed IP) then enter IP Address "192.168.20.254", subnet mask "255.255.255.0", Default gateway "192.168.20.1".

Press "Apply" button to confirm the configuration setting.

## Wide Area Network (WAN) Settings

You may choose different connection type suitable for your environment. Besides, you may also configure parameters according to the selected connection type.



#### 2. Configure the LAN interface:

Open "Local Area Network (LAN) settings" page, enter the IP Address "10.10.10.254", Subnet Mask "255.255.255.0". Enable DHCP Server, DHCP client range "10.10.10.100" to "10.10.10.200", default Gateway "10.10.10.254".

Press "Apply" button to confirm the configuration setting

# Local Area Network (LAN) Settings

You may enable/disable networking functions and configure their parameters as your wish.

| LAN Setup            |                   |  |  |  |  |
|----------------------|-------------------|--|--|--|--|
| Hostname             | AP                |  |  |  |  |
| IP Address           | 10.10.10.254      |  |  |  |  |
| Subnet Mask          | 255.255.255.0     |  |  |  |  |
| LAN 2                | ○ Enable          |  |  |  |  |
| LAN2 IP Address      |                   |  |  |  |  |
| LAN2 Subnet Mask     |                   |  |  |  |  |
| MAC Address          | 00:1A:EF:0E:63:F3 |  |  |  |  |
| DHCP Type            | Server 💌          |  |  |  |  |
| Start IP Address     | 10.10.10.100      |  |  |  |  |
| End IP Address       | 10.10.10.200      |  |  |  |  |
| Subnet Mask          | 255.255.255.0     |  |  |  |  |
| Primary DNS Server   | 10.10.10.254      |  |  |  |  |
| Secondary DNS Server | 0.0.0.0           |  |  |  |  |
| Default Gateway      | 10.10.10.254      |  |  |  |  |

## 3. Configure the WLAN interface:

Open "Basic Wireless Settings" page, enter the SSID "AP", Channel Number "AutoSelect".

Press "Apply" button to confirm the configuration setting.

| Radio On/Off                  | RADIO OFF            |     |
|-------------------------------|----------------------|-----|
| Network Mode                  | 11b/g/n mixed mode 💌 |     |
| Network Name(SSID)            | AP Hidden Isolate    | d 🗆 |
| Multiple SSID1                | Hidden Isolate       | d 🗆 |
| Multiple SSID2                | Hidden 🗆 Isolate     | d 🗆 |
| Multiple SSID3                | Hidden 🗌 Isolate     | d 🔲 |
| Multiple SSID4                | Hidden Isolate       | d 🔲 |
| Multiple SSID5                | Hidden 🗆 Isolate     | d 🔲 |
| Multiple SSID6                | Hidden Isolate       | d 🗌 |
| Multiple SSID7                | Hidden ☐ Isolate     | d 🔲 |
| Broadcast Network Name (SSID) |                      |     |
| AP Isolation                  | ○ Enable             |     |
| MBSSID AP Isolation           | ○ Enable             |     |
| BSSID                         | 00:1A:EF:0E:63:F3    |     |
| Frequency (Channel)           | AutoSelect ✓         |     |

# 4.4.3 Example three -set WLAN to be WAN as WiFi Client

User Mr. ABC likes to configure this WLAN Broadband Router to be a WiFi client. In order to communicate with another AP. Mr. ABC collects information and plans the WLAN Broadband Router implementation by the following configuration.

#### WiFi client:

WAN configuration: DHCP (Auto config)

| IP Address          | n/a |
|---------------------|-----|
| Subnet Mask         | n/a |
| Default Gateway     | n/a |
| Primary DNS Address | n/a |

#### LAN configuration:

| IP Address        | 10.10.10.254                |  |  |
|-------------------|-----------------------------|--|--|
| Subnet Mask       | 255.255.255.0               |  |  |
| DHCP Client Range | 10.10.10.100 - 10.10.10.200 |  |  |

#### WLAN configuration:

| SSID           | Depend on AP |  |  |
|----------------|--------------|--|--|
| Channel Number | Depend on AP |  |  |

#### WiFi server:

## AP configuration:

| SSID                | TEST AP                    |  |  |
|---------------------|----------------------------|--|--|
| Channel Number      | Channel 1                  |  |  |
| Wireless Encryption | WPA2                       |  |  |
| DHCP server         | 192.168.1.33~192.168.1.254 |  |  |

## 1. Configure the Operation Mode:

Open "Operation Mode Configuration" page, select **Ethernet Converter**, then click "*Apply*" button to confirm the configuration setting and reboot the WLAN Broadband Router. After reboot, the wireless LAN will become to WAN interface.

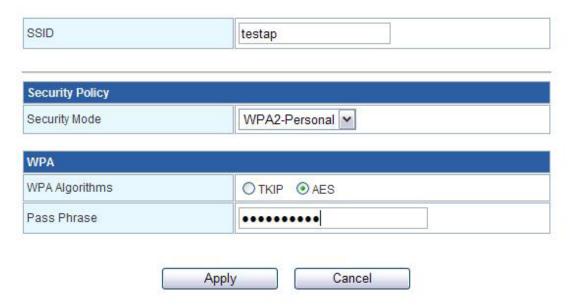
| Operation Mode Configuration                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| You may configure the operation mode suitable for you environment.                                                                                     |
| O Bridge:                                                                                                                                              |
| All ethernet and wireless interfaces are bridged into a single bridge interface.                                                                       |
| ○ Gateway:                                                                                                                                             |
| The first ethernet port is treated as WAN port. The other ethernet ports and the wireless interface are bridged together and are treated as LAN ports. |
| Ethernet Converter:                                                                                                                                    |
| The wireless interface is treated as WAN port, and the ethernet ports are LAN ports.                                                                   |
|                                                                                                                                                        |
| Apply Cancel                                                                                                                                           |

#### 2. Site Survey:

Open "Site Survey" page under Wireless Settings, and select the AP "testap".

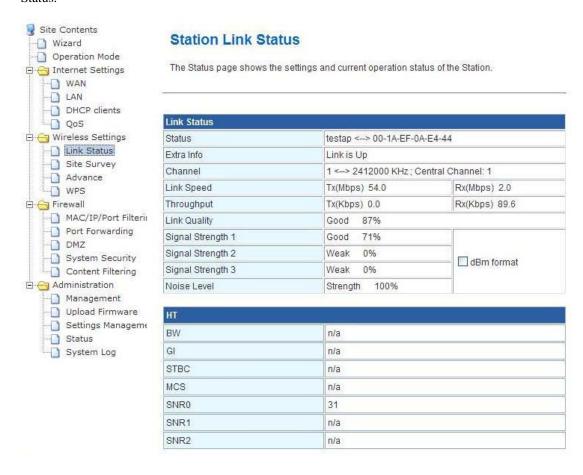
Press "Connect" button to connect with the AP.




## Station Site Survey

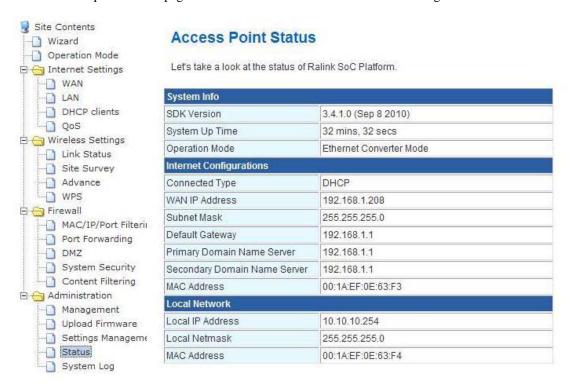
Site survey page shows information of APs nearby. You may choose one of these APs connecting or adding it to profile.

|     | SSID                    | BSSID                 | RSSI | Channel | Encryption | Authentication | Network<br>Type |
|-----|-------------------------|-----------------------|------|---------|------------|----------------|-----------------|
| 0   | Account_187             | 00-1A-EF-08-<br>5C-1D | 44%  | 1       | AES        | WPA2-PSK       | Infrastructure  |
| 0   | 192.168.1.190           | 00-1A-EF-01-<br>D1-20 | 20%  | 1       | Not Use    | OPEN           | Infrastructure  |
| 0   | 8186booster             | 00-1A-EF-<br>0E-DF-C9 | 88%  | 1       | Not Use    | OPEN:          | Infrastructure  |
| (0) | testap                  | 00-1A-EF-<br>0A-E4-44 | 78%  | 1       | AES        | WPA2-PSK       | Infrastructure  |
| 0   | 192.168.1.8_2F          | 00-1A-EF-04-<br>F0-8E | 0%   | 1       | AES        | WPA2-PSK       | Infrastructure  |
| 0   | TEST_ROOM               | 00-1A-EF-<br>0C-F4-ED | 39%  | 1       | TKIP       | WPA-PSK        | Infrastructure  |
| 0   | RTK 11n AP              | 00-1A-EF-17-<br>3B-78 | 0%   | 1       | Not Use    | OPEN           | Infrastructure  |
| 0   | Loopcomm                | 00-1A-EF-<br>0E-87-C4 | 0%   | 6       | Not Use    | OPEN           | Infrastructure  |
| 0   | 192.168.1,9-<br>2FStore | 00-1A-EF-05-<br>BB-28 | 34%  | 13      | AES        | WPA2-PSK       | Infrastructure  |
| 0   | RTK 11n AP              | 00-1A-EF-17-<br>3C-A1 | 0%   | 6       | Not Use    | OPEN           | Infrastructure  |
| 0   | Kevin-AP                | 00-1A-EF-12-<br>32-56 | 50%  | 6       | AES        | WPA-PSK        | Infrastructure  |


#### 3. Wireless encryption setting:

If the AP has encryption setting, it will pop out a window for you filling the encryption setting. Please fill up the encryption code and click "*Apply*" button to connect with the AP.




#### 4. Station Link Status:

After connection with AP, you can open "Link Status" page under Wireless Settings to check Link Status.



#### 5 Status:

You also can open "Status" page under Administration to check Internet Configurations.



# 5. FREQUENTLY ASKED QUESTIONS (FAQ)

## 5.1 What and how to find my PC's IP and MAC address?

## 5.1 What and how to find my PC's IP and MAC address?

IP address is the identifier for a computer or device on a TCP/IP network. Networks using the TCP/IP protocol route messages based on the IP address of the destination. The format of an IP address is a 32-bit numeric address written as four numbers separated by periods. Each number can be zero to 255. For example, 191.168.1.254 could be an IP address

The MAC (Media Access Control) address is your computer's unique hardware number. (On an Ethernet LAN, it's the same as your Ethernet address.) When you're connected to the Internet from your computer (or host as the Internet protocol thinks of it), a correspondence table relates your IP address to

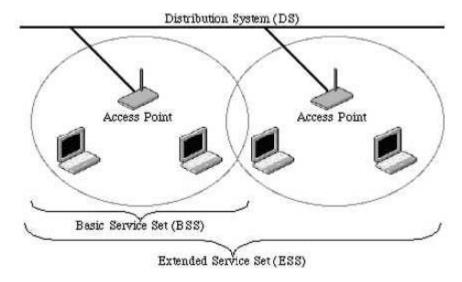
your computer's physical (MAC) address on the LAN.

To find your PC's IP and MAC address,

- ✓ Open the Command program in the Microsoft Windows.
- ✓ Type in "ipconfig /all", then press the Enter button.
- ✓ Your PC's IP address is the one entitled IP Address and your PC's MAC address is the one entitled Physical Address.

## **5.2 What is Wireless LAN?**

A wireless LAN (WLAN) is a network that allows access to Internet without the need for any wired connections to the user's machine.


## **5.3** What are ISM bands?

ISM stands for Industrial, Scientific and Medical; radio frequency bands that the Federal Communications Commission (FCC) authorized for wireless LANs. The ISM bands are located at 915 +/-13 MHz, 2450 +/-50 MHz and 5800 +/-75 MHz.

## 5.4 How does wireless networking work?

The 802.11 standard define two modes: infrastructure mode and ad hoc mode. In infrastructure mode, the wireless network consists of at least one access point connected to the wired network infrastructure and a set of wireless end stations. This configuration is called a Basic Service Set (BSS). An Extended Service Set (ESS) is a set of two or more BSSs forming a single sub-network. Since most corporate WLANs require access to the wired LAN for services (file servers, printers, Internet links) they will operate in infrastructure mode.

Example



xample 1: wireless Infrastructure Mode

Ad hoc mode (also called peer-to-peer mode or an Independent Basic Service Set, or IBSS) is simply a set of 802.11 wireless stations that communicate directly with one another without using an access point or any connection to a wired network. This mode is useful for quickly and easily setting up a wireless network anywhere that a wireless infrastructure does not exist or is not required for services, such as a hotel room, convention center, or airport, or where access to the wired network is barred (such as for consultants at a client site).



Example 2: wireless Ad Hoc Mode

## 5.5 What is BSSID?

A six-byte address is that distinguish a particular a particular access point from others. Also know as just SSID. Serve as a network ID or name.

## **5.6 What is ESSID?**

The Extended Service Set ID (ESSID) is the name of the network you want to access. It is used to identify different wireless networks.

## 5.7 What are potential factors that may causes interference?

Factors of interference:

- ✓ Obstacles: walls, ceilings, furniture... etc.
- ✓ Building Materials: metal door, aluminum studs.
- ✓ Electrical devices: microwaves, monitors and electrical motors.

Solutions to overcome the interferences:

- ✓ Minimizing the number of walls and ceilings.
- ✓ Position the WLAN antenna for best reception.
- ✓ Keep WLAN devices away from other electrical devices, eg: microwaves, monitors, electric motors…etc.
- ✓ Add additional WLAN Access Points if necessary.

# 5.8 What are the Open System and Shared Key

## authentications?

IEEE 802.11 supports two subtypes of network authentication services: open system and shared key. Under open system authentication, any wireless station can request authentication. The station that needs to authenticate with another wireless station sends an authentication management frame that contains the identity of the sending station. The receiving station then returns a frame that indicates whether it recognizes the sending station. Under shared key authentication, each wireless station is assumed to have received a secret shared key over a secure channel that is independent from the 802.11 wireless network communications channel.

## 5.9 What is WEP?

An option of IEEE 802.11 function is that offers frame transmission privacy similar to a wired network.

The Wired Equivalent Privacy generates secret shared encryption keys that both source and destination stations can use to alert frame bits to avoid disclosure to eavesdroppers.

WEP relies on a secret key that is shared between a mobile station (e.g. a laptop with a wireless Ethernet card) and an access point (i.e. a base station). The secret key is used to encrypt packets before they are transmitted, and an integrity check is used to ensure that packets are not modified in transit.

## 5.10 What is Fragment Threshold?

The proposed protocol uses the frame fragmentation mechanism defined in IEEE 802.11 to achieve parallel transmissions. A large data frame is fragmented into several fragments each of size equal to fragment threshold. By tuning the fragment threshold value, we can get varying fragment sizes. The determination of an efficient fragment threshold is an important issue in this scheme. If the fragment threshold is small, the overlap part of the master and parallel transmissions is large. This means the spatial reuse ratio of parallel transmissions is high. In contrast, with a large fragment threshold, the overlap is small and the spatial reuse ratio is low. However high fragment threshold leads to low fragment overhead. Hence there is a trade-off between spatial re-use and fragment overhead. Fragment threshold is the maximum packet size used for fragmentation. Packets larger than the size programmed in this field will be fragmented.

If you find that your corrupted packets or asymmetric packet reception (all send packets, for example). You may want to try lowering your fragmentation threshold. This will cause packets to be broken into smaller fragments. These small fragments, if corrupted, can be resent faster than a larger fragment. Fragmentation increases overhead, so you'll want to keep this value as close to the maximum value as possible.

## 5.11 What is RTS (Request to Send) Threshold?

The RTS threshold is the packet size at which packet transmission is governed by the RTS/CTS transaction. The IEEE 802.11-1997 standard allows for short packets to be transmitted without RTS/CTS transactions. Each station can have a different RTS threshold. RTS/CTS is used when the data packet size exceeds the defined RTS threshold. With the CSMA/CA transmission mechanism, the transmitting station sends out an RTS packet to the receiving station, and waits for the receiving station to send back a CTS (Clear to Send) packet before sending the actual packet data.

This setting is useful for networks with many clients. With many clients, and a high network load, there will be many more collisions. By lowering the RTS threshold, there may be fewer collisions, and

will be many more collisions. By lowering the RTS threshold, there may be fewer collisions, and performance should improve. Basically, with a faster RTS threshold, the system can recover from problems faster. RTS packets consume valuable bandwidth, however, so setting this value too low will limit performance.

## **5.12 What is Beacon Interval?**

In addition to data frames that carry information from higher layers, 802.11 include management and control frames that support data transfer. The beacon frame, which is a type of management frame, provides the "heartbeat" of a wireless LAN, enabling stations to establish and maintain communications in an orderly fashion.

Beacon Interval represents the amount of time between beacon transmissions. Before a station enters power save mode, the station needs the beacon interval to know when to wake up to receive the beacon (and learn whether there are buffered frames at the access point).

## **5.13 What is Preamble Type?**

There are two preamble types defined in IEEE 802.11 specification. A long preamble basically gives the decoder more time to process the preamble. All 802.11 devices support a long preamble. The short preamble is designed to improve efficiency (for example, for VoIP systems). The difference between the two is in the Synchronization field. The long preamble is 128 bits, and the short is 56 bit

## **5.14 What is SSID Broadcast?**

Broadcast of SSID is done in access points by the beacon. This announces your access point (including various bits of information about it) to the wireless world around it. By disabling that feature, the SSID configured in the client must match the SSID of the access point.

Some wireless devices don't work properly if SSID isn't broadcast (for example the D-link DWL-120 USB 802.11b adapter). Generally if your client hardware supports operation with SSID disabled, it'snot a bad idea to run that way to enhance network security. However it's no replacement for WEP, MAC filtering or other protections.

## 5.15 What is Wi-Fi Protected Access (WPA)?

Wi-Fi's original security mechanism, Wired Equivalent Privacy (WEP), has been viewed as insufficient

for securing confidential business communications. A longer-term solution, the IEEE 802.11i standard, is under development. However, since the IEEE 802.11i standard is not expected to be published until the end of 2003, several members of the WI-Fi Alliance teamed up with members of the IEEE 802.11i task group to develop a significant near-term enhancement to Wi-Fi security. Together, this team developed Wi-Fi Protected Access.

To upgrade a WLAN network to support WPA, Access Points will require a WPA software upgrade. Clients will require a software upgrade for the network interface card, and possibly a software update for the operating system. For enterprise networks, an authentication server, typically one that supports RADIUS and the selected EAP authentication protocol, will be added to the network.

## **5.16 What is WPA2?**

It is the second generation of WPA. WPA2 is based on the final IEEE 802.11i amendment to the 802.11 standard.

## 5.17 What is 802.1x Authentication?

802.1x is a framework for authenticated MAC-level access control, defines Extensible Authentication Protocol (EAP) over LANs (WAPOL). The standard encapsulates and leverages much of EAP, which was defined for dial-up authentication with Point-to-Point Protocol in RFC 2284.

Beyond encapsulating EAP packets, the 802.1x standard also defines EAPOL messages that convey the shared key information critical for wireless security.

## 5.18 What is Temporal Key Integrity Protocol (TKIP)?

The Temporal Key Integrity Protocol, pronounced tee-kip, is part of the IEEE 802.11i encryption standard for wireless LANs. TKIP is the next generation of WEP, the Wired Equivalency Protocol, which is used to secure 802.11 wireless LANs. TKIP provides per-packet key mixing, a message integrity check and a re-keying mechanism, thus fixing the flaws of WEP.

## 5.19 What is Advanced Encryption Standard (AES)?

Security issues are a major concern for wireless LANs, AES is the U.S. government's next-generation cryptography algorithm, which will replace DES and 3DES.

## 5.20 What is Inter-Access Point Protocol (IAPP)?

The IEEE 802.11f Inter-Access Point Protocol (IAPP) supports Access Point Vendor interoperability, enabling roaming of 802.11 Stations within IP subnet.

IAPP defines messages and data to be exchanged between Access Points and between the IAPP and high layer management entities to support roaming. The IAPP protocol uses TCP for inter-Access Point communication and UDP for RADIUS request/response exchanges. It also uses Layer 2 frames to update the forwarding tables of Layer 2 devices.

## 5.21 What is Wireless Distribution System (WDS)?

The Wireless Distribution System feature allows WLAN AP to talk directly to other APs via wireless channel, like the wireless bridge or repeater service.

# 5.22 What is Universal Plug and Play (uPNP)?

UPnP is an open networking architecture that consists of services, devices, and control points. Theultimate goal is to allow data communication among all UPnP devices regardless of media, operating

system, programming language, and wired/wireless connection.

## 5.23 What is Maximum Transmission Unit (MTU) Size?

Maximum Transmission Unit (MTU) indicates the network stack of any packet is larger than this value will be fragmented before the transmission. During the PPP negotiation, the peer of the PPP connection will indicate its MRU and will be accepted. The actual MTU of the PPP connection will be set to the smaller one of MTU and the peer's MRU.

## **5.24 What is Clone MAC Address?**

Clone MAC address is designed for your special application that request the clients to register to a server machine with one identified MAC address. Since that all the clients will communicate outside world through the WLAN Broadband Router, so have the cloned MAC address set on the WLAN Broadband Router will solve the issue.

## 5.25 What is DDNS?

DDNS is the abbreviation of Dynamic Domain Name Server. It is designed for user owned the DNS server with dynamic WAN IP address.

## 5.26 What is NTP Client?

NTP client is designed for fetching the current timestamp from internet via Network Time protocol. User can specify time zone, NTP server IP address.

## 5.27 What is VPN?

VPN is the abbreviation of Virtual Private Network. It is designed for creating point-to point private link via shared or public network.

## 5.28 What is IPSEC?

IPSEC is the abbreviation of IP Security. It is used to transferring data securely under VPN.

## 5.29 What is WLAN Block Relay between Clients?

An Infrastructure Basic Service Set is a BSS with a component called an Access Point (AP). The access

point provides a local relay function for the BSS. All stations in the BSS communicate with the access point and no longer communicate directly. All frames are relayed between stations by the access point. This local relay function effectively doubles the range of the IBSS.

## **5.30 What is WMM?**

WMM is based on a subset of the IEEE 802.11e WLAN QoS draft standard. WMM adds prioritized capabilities to Wi-Fi networks and optimizes their performance when multiple concurring applications, each with different latency and throughput requirements, compete for network resources. By using WMM, end-user satisfaction is maintained in a wider variety of environments and traffic conditions. WMM makes it possible for home network users and enterprise network managers to decide which data streams are most important and assign them a higher traffic priority.

## **5.31 What is WLAN ACK TIMEOUT?**

ACK frame has to receive ACK timeout frame. If remote does not receive in specified period, it will be retransmitted.

## 5.32 What is Modulation Coding Scheme (MCS)?

MCS is Wireless link data rate for 802.11n. The throughput/range performance of an AP will depend

its implementation of coding schemes. MCS includes variables such as the number of spatial streamsmodulation, and the data rate on each stream. Radios establishing and maintaining a link must automatically negotiate the optimum MCS based on channel conditions and then continuously adjust the selection of MCS as conditions change due to interference, motion, fading, and other events.

# **5.33 What is Frame Aggregation?**

Every 802.11 packet, no matter how small, has a fixed amount of overhead associated with it. Frame Aggregation combines multiple smaller packets together to form one larger packet. The larger packet can be sent without the overhead of the individual packets. This technique helps improve the efficiency of the 802.11n radio allowing more end user data to be sent in a given time.

# 5.34 What is Guard Intervals (GI)?

. A GI is a period of time between symbol transmission that allows reflections (from multipath) from the  $\frac{1}{2}$ 

previous data transmission to settle before transmitting a new symbol. The 802.11n draft specifies two guard intervals: 400ns (short) and 800ns (long). Support of the 400ns GI is optional for transmit and receive. The purpose of a guard interval is to introduce immunity to propagation delays, echoes, and reflections to which digital data is normally very sensitive.