Certificate No: EC191309

CERTIFICATE

EQUIPMENT: Network Video Recorder MODEL NO. : KRR-4XX (XX is the number of channels this device supports, 16=16 channels, 24=24 channels) APPLICANT : KOUKAAM a.s.

Kaplanova 2252/8, 148 00 Praha 4, Czech Republic.

CERTIFY THAT:

THE MEASUREMENTS SHOWN IN THIS TEST REPORT WERE MADE IN ACCORDANCE WITH THE PROCEDURES GIVEN IN EUROPEAN COUNCIL DIRECTIVE 2004/108/EC. THE EQUIPMENT WAS PASSED THE TEST PERFORMED ACCORDING TO European Standard EN 55022:2006/A1:2007 Class B, EN 61000-3-2:2006/A2:2009, EN 61000-3-3:2008 and EN 55024:1998/A1:2001/A2:2003 (IEC 61000-4-2:2008, IEC 61000-4-3:2006/A1:2007/A2:2010, IEC 61000-4-4:2004, IEC 61000-4-5:2005, IEC 61000-4-6:2008, IEC 61000-4-8:2009, IEC 61000-4-11:2004). THE TEST WAS CARRIED OUT ON Dec. 27, 2011 AT SPORTON INTERNATIONAL INC. LAB.

Tan adrang

HEREBY

Castries Huang Supervisor

CE EMC TEST REPORT

according to

European Standard EN 55022:2006/A1:2007 Class B, EN 61000-3-2:2006/A2:2009, EN 61000-3-3:2008 and EN 55024:1998/A1:2001/A2:2003 (IEC 61000-4-2:2008, IEC 61000-4-3:2006/A1:2007/A2:2010, IEC 61000-4-4:2004, IEC 61000-4-5:2005, IEC 61000-4-6:2008, IEC 61000-4-8:2009, IEC 61000-4-11:2004)

Equipment	: Network Video Recorder
Model No.	: KRR-4XX (XX is the number of channels this device supports, 16=16 channels, 24=24 channels)
Applicant	: KOUKAAM a.s. Kaplanova 2252/8, 148 00 Praha 4, Czech Republic.

Statement

- · The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- This test report is only applicable to European Community.

SPORTON International Inc.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

History of this test report	iii
CERTIFICATE OF COMPLIANCE	1
General Description of Equipment under Test 1.1. Applicant 1.2. Manufacturer 1.3. Basic Description of Equipment under Test 1.4. Feature of Equipment under Test	2 2 2 2
2. Test Configuration of Equipment under Test 2.1. Test Manner 2.2. Description of Test System	3 4
3. Test Software	Э
4. General Information of Test. 4.1. Test Facility 4.2. Test Voltage 4.3. Measurement Procedure. 4.4. Test in Compliance with 4.5. Frequency Range Investigated 4.6. Test Distance	6 6 6 6 7 7
5. Test of Conducted Powerline	8
 5.1. Description of Major Test Instruments 5.2. Test Procedures 5.3. Typical Test Setup Layout of Conducted Powerline 5.4. Typical Test Setup Layout of disturbances at telecommunication ports 5.5. Test Result of AC Powerline Conducted Emission 5.6. Photographs of Conducted Powerline Test Configuration 5.7. Test Result of disturbances at telecommunication ports 5.8. Photographs of disturbances at telecommunication ports Test Configuration 	8 9 10 11 13 14 17
6. Test of Radiated Emission	18
 6.1. Description of Major Test Instruments 6.2. Test Procedures 6.3. Typical Test Setup Layout of Radiated Emission 6.4. Test Result of Radiated Emission 6.5. Photographs of Radiated Emission Test Configuration 	18 19 20 21 29
7. Harmonics Test	31
 8. Voltage Fluctuations Test	32 32 32 32 32 33 35
9. Electrostatic Discharge Immunity Test (ESD)	36

Page Number : i Issued Date : Dec. 28, 2011

CE EMC TEST REPORT

Report No. : EC191309

9.1. Test Setup	36
9.2. Test Setup for Tests Performed in Laboratory	37
9.3. ESD Test Procedure	
9.4. Test Severity Levels	
9.5. Test Points	40
9.6. Photographs of Electrostatic Discharge Immunity Test	41
10. Radio Frequency Electromagnetic Field Immunity Test (RS)	42
10.1. Test Setup	42
10.2. Test Procedure	43
10.3. Test Severity Levels	44
10.4. Test side	44
10.5. Photographs of Radio Frequency Electromagnetic Field Immunity Test	45
11. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)	46
11.1. Test setup	46
11.2. Test on Power Line	47
11.3. Test on Communication Lines	47
11.4. Test Procedure	48
11.5. Test Severity Levels	48
11.6. Photographs of Electrical Fast Transient/BURST Immunity Test	49
12. Surge Immunity Test	51
12.1. Test Record	51
12.2. Test Level	52
12.3. Test Procedure	53
12.4. Operating Condition	54
12.5. Photographs of Surge Immunity Test	55
13. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)	56
13.1. Test Level	56
13.2. Operating Condition	56
13.3. Test Procedure	57
13.4. Photographs of CS tests	58
14. Power Frequency Magnetic Field immunity tests	59
14.1. Test Record	59
14.2. Test Setup	59
14.3. Photographs of Power Frequency Magnetic Field immunity tests	60
15. Voltage Dips and Voltage Interruptions Immunity Tests	61
15.1. Test Record of Voltage Interruption	61
15.2. Test Record of Voltage Dips	61
15.3. Testing Requirement and Procedure	62
15.4. Test Conditions	62
15.5. Operating Condition	62
15.6. Photographs of Voltage Dips and Voltage Interruptions Immunity Tests	63
16. List of Measuring Equipment Used	64
Appendix A. Photographs of EUT	A1 ~ A14

Report No.	Version	Issue Date	Description
EC191309	Rev.01	Dec. 28, 2011	Initial issue of report

History of this test report

Certificate No. : EC191309

CERTIFICATE OF COMPLIANCE

according to

European Standard EN 55022:2006/A1:2007 Class B, EN 61000-3-2:2006/A2:2009, EN 61000-3-3:2008 and EN 55024:1998/A1:2001/A2:2003 (IEC 61000-4-2:2008, IEC 61000-4-3:2006/A1:2007/A2:2010, IEC 61000-4-4:2004, IEC 61000-4-5:2005, IEC 61000-4-6:2008, IEC 61000-4-8:2009, IEC 61000-4-11:2004)

Equipment	Network Video Re	corder
Model No.	KRR-4XX (XX is th channels this devic 16=16 channels, 2	ne number of ce supports, 4=24 channels)
Applicant	KOUKAAM a.s. Kaplanova 2252/8 Czech Republic.	, 148 00 Praha 4,

I HEREBY CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **EUROPEAN COUNCIL DIRECTIVE 2004/108/EC.** The equipment was *passed* the test performed according to **European Standard EN 55022:2006/A1:2007 Class B, EN 61000-3-2:2006/A2:2009, EN 61000-3-3:2008 and EN 55024:1998/A1:2001/A2:2003 (IEC 61000-4-2:2008,**

IEC 61000-4-3:2006/A1:2007/A2:2010, IEC 61000-4-4:2004, IEC 61000-4-5:2005, IEC 61000-4-6:2008, IEC 61000-4-8:2009, IEC 61000-4-11:2004).

The test was carried out on *Dec. 27, 2011* at SPORTON International Inc. LAB.

Castries Huang Supervisor

SPORTON International Inc.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

1. General Description of Equipment under Test

1.1. Applicant

KOUKAAM a.s.

Kaplanova 2252/8, 148 00 Praha 4, Czech Republic.

1.2. Manufacturer

Same as 1.1

1.3. Basic Description of Equipment under Test

Equipment	:	Network Video Recorder
Model No.	:	KRR-4XX (XX is the number of channels this device supports, 16=16
		channels, 24=24 channels)
RJ45 Cable x2		Non-Shielded, 15 m
USB Cable	:	D-Shielded, 1.8 m
Y-AC Power Cable	:	Non-Shielded, 0.5 m
RJ45 Cable x2	:	Non-Shielded, 1.5 m
Data Cable Type	:	Please see section 2.2 of this test report for details
Power Supply Type	:	From Switching Power Supply
AC Power Cord x2	:	Non-Shielded, 1.8 m, 3 pin

1.4. Feature of Equipment under Test

Please refer to user manual.

2. Test Configuration of Equipment under Test

2.1. Test Manner

- a. The EUT has been associated with personal computer and peripherals pursuant to European Standard EN 55022 and EN 55024.
- b. The complete test system included remote workstation and EUT for Conducted and Radiated below 1GHz test. The remote workstation included DELL PC, DELL LCD Monitor, DELL USB Keyboard, DELL USB Mouse, ASUS HUB, VIVOTEK CCD and EUT.
- c. The complete test system included remote workstation and EUT for Radiated above 1GHz test. The remote workstation included DELL Notebook, ASUS HUB, VIVOTEK CCD and EUT.
- d. The complete test system included remote workstation, Transcend USB 2.0 Flash Disk, ASUS HUB,
 VIVOTEK CCD and EUT for EMS test. The remote workstation included DELL PC, DELL LCD Monitor,
 DELL USB Keyboard and DELL USB Mouse.

e. The following test modes were performed:

Test Items	Function Type
	Mode 1. REC +LAN 1Gbps+POWER(ETASIS)
AC Conducted	Mode 2. PLAY +LAN 100Mbps+POWER(ETASIS)
Emission	Mode 3. REC +LAN 1Gbps+POWER(EMACS)
	cause "mode 1" generated the worst test result; it was reported as final data.
	Mode 1. REC +LAN 1Gbps+POWER(ETASIS)
	Mode 2. REC +LAN 100Mbps+POWER(ETASIS)
	Mode 3. REC +LAN 10Mbps+POWER(ETASIS)
ISN	Mode 4. REC +LAN 1Gbps+POWER(EMACS)
	Mode 5. REC +LAN 100Mbps+POWER(EMACS)
	Mode 6. REC +LAN 10Mbps+POWER(EMACS)
	cause "mode 1" generated the worst test result; it was reported as final data.
	Mode 1. REC +LAN 1Gbps+POWER(ETASIS)
	Mode 2. PLAY +LAN 100Mbps+POWER(ETASIS)
Padiatad	Mode 3. REC +LAN 1Gbps+POWER(EMACS)
Emissions	< below 1GHz >cause "mode 1" generated the worst test result; it was reported
ETHISSIONS	as final data.
	< above 1GHz >cause "mode 1" is highest frequency of the internal sources of
	the EUT; it was reported as final data.
EMS	Mode 1. REC +LAN 1Gbps+POWER(ETASIS)
EIVIS	Mode 2. REC +LAN 1Gbps+POWER(EMACS)

f. Frequency range investigated: Conduction 150 kHz to 30 MHz, radiation 30 MHz to 6,000 MHz.

g. Frequency range investigated immunity test: CS 150 kHz to 80 MHz, RS 80 MHz to 1,000 MHz.

2.2. Description of Test System

< EMI ><Conducted and Radiated below 1GHz>

No.	Peripheral	Manufacturer	Model Number	FCC ID	Cable / Spec. Description	Placed
1	Personal Computer	DELL	DCTA	DoC	N/A	Remote
2	LCD Monitor	DELL	E198WFPf	DoC	D-SUB Cable, D-Shielded, 1.8m	Remote
3	USB Keyboard	DELL	SK-8175	DoC	USB Cable, AL-F-Shielded, 1.8m	Remote
4	USB Mouse	DELL	MOC5UO	DoC	USB Cable, AL-F-Shielded, 1.8m	Remote
5	HUB	ASUS	GX-01051	DoC	N/A	Remote
6	CCD	VIVOTEK	H.264	N/A	N/A	Remote

< EMI ><Radiated above 1GHz>

No.	Peripheral	Manufacturer	Model Number	FCC ID	Cable / Spec. Description	Placed
1	Notebook	DELL	6400	DoC	N/A	Remote
2	HUB	ASUS	GX-01051	DoC	N/A	Remote
3	CCD	VIVOTEK	H.264	N/A	N/A	Remote

< EMS >

No.	Peripheral	Manufacturer	Model Number	FCC ID	Cable / Spec. Description	Placed
1	USB 2.0 Flash Disk	TRANSCEND	JFV30	DoC	USB Cable, D-Shielded, 0.5m	Local
2	HUB	ASUS	GX-01051	DoC	N/A	Local
3	CCD	VIVOTEK	H.264	N/A	N/A	Local
4	Personal Computer	DELL	470	DoC	N/A	Remote
5	LCD Monitor	DELL	E198WFPf	DoC	D-SUB Cable, Shielded, 1.8m	Remote
6	USB Keyboard	DELL	SK-8115	DoC	USB Cable, AL-F-Shielded, 2.0m	Remote
7	USB Mouse	DELL	MOA8BO	DoC	USB Cable, AL-F-Shielded, 1.8m	Remote

3. Test Software

< EMI >

During the test, the programs under Win XP from remote workstation were executed:

The program was executed as follows:

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the hard disk drive and runs it.
- c. The PC sends "H" pattern to the monitor, and the monitor displays "H" patterns on the screen.
- d. The PC sends signal messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- e. Repeat the steps from c to d.

At the same time, the following programs were executed:

- Executed "ping.exe" to link with the EUT to receive and transmit data by RJ45 cable.
- Executed "IE.exe" to display the image captured from EUT by RJ45 cable.

For ISN test on the 10Mbps, the remote workstation Executed "ping.exe" to traffic packet data generated software and keep 10% traffic load to link with the EUT by RJ45 cable.

For ISN test on the 1Gbps and 100Mbps, the remote workstation Executed "tfgen.exe" to traffic packet data generated software and keep 10% traffic load to link with the EUT by RJ45 cable.

< EMS >

During the test, the programs under Win XP from remote workstation were executed:

- Executed "ping.exe" to link with the EUT to receive and transmit data by RJ45 cable.

- Executed "IE.exe" to display the image captured from EUT by RJ45 cable.

4. General Information of Test

4.1. Test Facility

<emi></emi>	
Test Site	SPORTON INTERNATIONAL INC.
Test Site Location	: No. 3, Lane 238, Kang Lo Street, Nei Hwu District, Taipei 11424, Taiwan, R.O.C. TEL : 886-2-2631-4739
	FAX : 886-2-2631-9740
Test Site No.	: CO01-NH, OS02-NH
Test Site Location	 No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
Test Site No. < EMS>	: 03CH03-HY
Test Site Location	 3F, No.587, Tanmeu St., Neihu District, Taipei, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777

4.2. Test Voltage

AC 230V / 50Hz

4.3. Measurement Procedure

EMI Test (conduction and radiation)	:	European Standard EN 55022 Class B					
Harmonics Test	:	European Standard EN 61000-3-2					
Voltage Fluctuations Test	:	European Standard EN 61000-3-3					
EMS Test	:	European Standard EN 55024					
(ESD: IEC 61000-4-2, RS: IEC 61000)-4-	3, EFT: IEC 61000-4-4, SURGE: IEC 61000-4-5,					
CS: IEC 61000-4-6, Power Frequence	cy I	Magnetic Field: IEC 61000-4-8, DIPS: IEC 61000-4-11)					
The test configuration, test modes and test software used in this test report are designated by the applicant.							

4.4. Test in Compliance with

:	European Standard EN 55022 Class B
:	European Standard EN 61000-3-2
:	European Standard EN 61000-3-3
:	European Standard EN 55024
0-4	-3, EFT: IEC 61000-4-4, SURGE: IEC 61000-4-5,
ncy	Magnetic Field: IEC 61000-4-8, DIPS: IEC 61000-4-11)
	: : : 0-4 ncy

4.5. Frequency Range Investigated

- a. Conducted emission test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 6,000 MHz
- c. Radio frequency electromagnetic field immunity test: 80-1000 MHz

4.6. Test Distance

- a. The test distance of radiated emission test from antenna to EUT is 10 M (from 30MHz~1GHz).
- b. The test distance of radiated emission test from antenna to EUT is 3 M (from 1GHz~6GHz).
- c. The test distance of radio frequency electromagnetic field immunity test from antenna to EUT is 3 M.

5. Test of Conducted Powerline

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in European Standard EN 55022 Clause 9. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meter above the ground plane as shown in section 5.3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position producing maximum conducted emissions.

5.1. Description of Major Test Instruments

•	Test Receiver	(R&SESCS 30)
	Attenuation	10 dB
	Start Frequency	0.15 MHz
	Stop Frequency	30 MHz
	IF Bandwidth	9 kHz

5.2. Test Procedures

- a. The EUT was placed on a desk 0.8 meter height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meter from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. Connect Telecommunication port to ISN (Impedance Stabilization Network).
- d. All the support units are connect to the other LISN.
- e. The LISN provides 50 ohm, coupling impedance for the measuring instrument.
- f. The CISPR states that a 50 ohm, 50 microhenry LISN should be used.
- g. Both sides of AC line were checked for maximum conducted interference.
- h. The frequency range from 150 kHz to 30 MHz was searched.
- i. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

CE EMC TEST REPORT

5.3. Typical Test Setup Layout of Conducted Powerline

- 1. AMN is 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- 2. EUT is connected to one artificial mains network (AMN).
- 3. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- 4. Rear of EUT to be flushed with rear of table top.
- 5. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- 6. If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- 7. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- 8. Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.

5.4. Typical Test Setup Layout of disturbances at telecommunication ports

- 1. AMN and ISN are 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- 2. EUT is connected to one artificial mains network (AMN).
- 3. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- 4. Rear of EUT to be flushed with rear of table top.
- 5. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- 6. If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- 7. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- 8. Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.

Test Mode	Mode 1		
Test Frequency	0.15 MHz ~ 30 MHz	Test Site No.	CO01-NH
Test Voltage	AC 230V / 50Hz	Test Engineer	Eddie
Temperature	23 °C	Relative Humidity	50 %

5.5. Test Result of AC Powerline Conducted Emission

Note: 1. Corrected Reading (dBµV) = LISN Factor + Cable Loss + Read Level = Level 2. All emissions not reported here are more than 10 dB below the prescribed limit.

CE EMC TEST REPORT

5.6. Photographs of Conducted Powerline Test Configuration

• The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 13 of 65Issued Date: Dec. 28, 2011Report Version: 01

Test Mode	Mode 1								
Test Frequency	.15 MHz ~ 30 MHz Test Site No. CO01-NH								
Test Voltage	AC 230V / 50Hz	Test Engineer	Eddie						
Temperature	23 °C	Relative Humidity	50 %						

5.7. Test Result of disturbances at telecommunication ports

Note: 1. Corrected Reading (dBµV) = LISN Factor + Cable Loss + Read Level = Level 2. All emissions not reported here are more than 10 dB below the prescribed limit.

Test Mode	Mode 2		
Test Frequency	0.15 MHz ~ 30 MHz	Test Site No.	CO01-NH
Test Voltage	AC 230V / 50Hz	Test Engineer	Eddie
Temperature	23 ℃	Relative Humidity	50 %

Note: 1. Corrected Reading $(dB\mu V) = LISN$ Factor + Cable Loss + Read Level = Level 2. All emissions not reported here are more than 10 dB below the prescribed limit.

Test Mode	Mode 3		
Test Frequency	0.15 MHz ~ 30 MHz	Test Site No.	CO01-NH
Test Voltage	AC 230V / 50Hz	Test Engineer	Eddie
Temperature	23 ℃	Relative Humidity	50 %

Note: 1. Corrected Reading $(dB\mu V) = LISN$ Factor + Cable Loss + Read Level = Level 2. All emissions not reported here are more than 10 dB below the prescribed limit.

5.8. Photographs of disturbances at telecommunication ports Test Configuration

• The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 17 of 65Issued Date: Dec. 28, 2011Report Version: 01

6. Test of Radiated Emission

Radiated emissions from 30 MHz to 6,000 MHz were measured with a bandwidth of 120 kHz for 30 MHz to 1,000 MHz and 1 MHz for above 1GHz according to the methods defines in European Standard EN 55022, Clause 10. The EUT was placed on a nonmetallic stand, 0.8 meter above the ground plane, as shown in section 6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

6.1. Description of Major Test Instruments

6.1.1. For Below 1GHz

•	Amplifier	(BURGEON BPA-530)
	RF Gain	30 dB
	Signal Input	0.01 MHz - 3 GHz
•	Test Receiver	(R&SESCI)
	Resolution Bandwidth	120 kHz
	Frequency Band	9 kHz - 3 GHz
	Quasi-Peak Detector	ON for Quasi-Peak Mode
		OFF for Peak Mode

6.1.2. For above 1GHz

•	Amplifier	(Agilent 8449B)
	RF Gain	35 dB
	Signal Input	1 GHz - 26.5 GHz
•	Test Receiver	(R&SESI)
	Attenuation	10 dB
	Start Frequency	1000 MHz
	Stop Frequency	6000 MHz
	Resolution Bandwidth	1 MHz
	Signal Input	20 Hz - 7 GHz

6.2. Test Procedures

< Below 1GHz >

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 10 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

< Above 1GHz >

- a. Same test set up as below 1GHz radiated testing.
- b. The EUT was set 3 meters from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. There should be absorber placed between the EUT and Antenna and its located size should let the test site meet CISPR16-1-4 requirement.
- d. The table was rotated 360 degrees to determine the position of the highest radiation.
- e. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- f. Set the DRG Horn Antenna (Model: 3115) at 1M height, then run the turn table to get the maximum noise reading from Horizontal and Vertical polarity separately.
- g. When EUT locating on the turn-table, and its height is over 172cm (Antenna's 3dB beam width of 6GHz is 27°), the DRG Horn Antenna must be raised up and descended down, then turning around the turn-table to get the maximum noise reading of the Horizontal and Vertical polarity separately. Note the maximum raise up height is same as the top of EUT.
- h. If emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

6.3. Typical Test Setup Layout of Radiated Emission

< Below 1GHz >

6.4. Test Result of Radiated Emission

Test mode	Mode 1	Test Site No.	OS02-NH
Test frequency	30 MHz ~ 1000 MHz	Test Engineer	Chas
Antenna distance	10 meters	Test Voltage	AC 230V / 50Hz
Temperature	17 °C	Relative Humidity	55 %

Note: 1. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)

2. Corrected Reading : Antenna Factor + Cable Loss + Read Level – Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following data

Site : OS02-NH Condition : CISPR/CNS/VCCI-B 10m OS02-ANT-01-20-2011 VERTICAL EUT : POWER : 230VAC MEMO : Over Limit ReadAntenna Cable Preamp Ant Freq Level Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dBuV dB/m dB dB CI.

10	124.980	26.93	-3.07	30.00	44.48	12.21	1.88	31.64 QP	100	180
2	165.110	24.50	-5.50	30.00	44.00	9.81	2.24	31.55 Peak		
3	179.990	24.15	-5.85	30.00	44.20	9.09	2.37	31.51 Peak		
4	200.060	26.26	-3.74	30.00	45.97	9.25	2.50	31.46 Peak		

Table

Pos

deg

 Site
 : OS02-NH

 Condition
 : CISPR/CNS/VCCI-B 10m OS02-ANT-01-20-2011 VERTICAL

 EUT
 :

 POWER
 : 230VAC

 MEMO
 :

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm	deg
1	249.600	30.02	-6.98	37.00	45.74	12.95	2.75	31.42	Peak		
2	312.800	29.35	-7.65	37.00	43.90	13.63	3.20	31.38	Peak		
3	499.200	30.25	-6.75	37.00	39.81	17.47	4.32	31.35	Peak		
4	599.200	30.28	-6.72	37.00	38.07	18.61	4.89	31.29	Peak		
5	760.800	29.51	-7.49	37.00	35.11	19.89	5.82	31.31	Peak		
6	796.800	30.53	-6.47	37.00	35.59	20.20	6.07	31.33	Peak		

 Site
 : OS02-NH

 Condition
 : CISPR/CNS/VCCI-B 10m OS02-ANT-01-20-2011 HORIZONTAL

 EUT
 :

 POWER
 : 230VAC

 MEMO
 :

		Over		Limit	ReadAntenna		Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	5		deg
1	125.000	24.95	-5.05	30.00	42.50	12.21	1.88	31.64	QP		
2	147.990	25.63	-4.37	30.00	44.55	10.59	2.08	31.59	Peak		
3	179.990	24.64	-5.36	30.00	44.69	9.09	2.37	31.51	Peak		
4 6	200.060	26.90	-3.10	30.00	46.61	9.25	2.50	31.46	Peak		

Site	: OS02-NH
Condition	: CISPR/CNS/VCCI-B 10m OS02-ANT-01-20-2011 HORIZONTAL
EUT	
POWER	: 230VAC
MEMO	

			Over	Limit	ReadAntenna		Cable Preamp			Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
đ	Mtz	dBuV/m	V/m dB	dBuV/m	dBuV	dB/m	dB	dB	а – С	 cm.	
1	249.600	29.57	-7.43	37.00	45.29	12.95	2.75	31.42	Peak		
2	365.600	29.09	-7.91	37.00	41.92	15.08	3.49	31.40	Peak		
3	480.000	31.11	-5.89	37.00	41.10	17.18	4.19	31.36	Peak		
4	499.200	30.01	-6.99	37.00	39.57	17.47	4.32	31.35	Peak		
5	747.200	30.06	-6.94	37.00	35.86	19.78	5.73	31.31	Peak		

Test mode	Mode 1	Test Site No.	03CH03-HY
Test frequency	1000 MHz ~ 6000 MHz	Test Engineer	Chris
Antenna distance	3 meter	Test Voltage	AC 230V / 50Hz
Temperature	17 °C	Relative Humidity	55 %

Note: 1. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)

2. Corrected Reading : Antenna Factor + Cable Loss + Read Level – Preamp Factor = Level

The test was passed at the minimum margin that marked by the frame in the following data

Site : 03CH03-HY Condition : CNS/VCCI/CISPR-B 3m HORN-6741-2011-06 VERTICAL EUT : Power : 230V 50Hz Modele : KRR-4XX Memo : REC +LAN 1 Gbps+POWER(ETASIS)

		Freq MHz	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
	<u>.</u>		dBuV/m	BuV/m dB	dBuV/m dB	dBuV	dB/m	n dB	dB		- <u></u> cm	deg	
1	3 1684	. 000	44.65	-25.35	70.00	47.53	26.04	3.96	32.88	Peak		222	
2	1772	. 000	43.93	-26.07	70.00	46.34	26.43	3.99	32.83	Peak			
3	1998	. 000	44.17	-25.83	70.00	45.26	27.50	4.08	32.67	Peak	0.000	1000	

 Site
 : 03CH03-HY

 Condition
 : CNS/VCCI/CISPR-B 3m HORN-6741-2011-06 VERTICAL

 EUT
 :

 Power
 : 230V 50Hz

 Modele
 : KRR-4XX

 Memo
 : REC +LAN 1 Gbps+POWER(ETASIS)

							0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos				
	MHz	dBuV/m	dB	dBuV/m dBuV	dB/m	dB	dB			deg					
1	3354.000	45.47	-28.53	74.00	42.04	30.79	5.41	32.77	Peak		222				
2	4158.000	45.99	-28.01	74.00	40.67	32.47	5.51	32.66	Peak						
3	5445.000	47.54	-26.46	74.00	40.82	33.92	5.36	32.56	Peak	000000	10000				

 Site
 : 03CH03-HY

 Condition
 : CNS/VCCI/CISPR-B 3m HORN-6741-2011-06 HORIZONTAL

 EUT
 :

 Power
 : 230V 50Hz

 Modele
 : KRR-4XX

 Memo
 : REC +LAN 1 Gbps+POWER(ETASIS)

		Freq MHz	Freq	Level	Over Limit	Limit Line	Readi Level	Antenna Factor	Cable Lo <i>ss</i>	Preamp Factor	Remark	Ant Po <i>s</i>	Table Pos
	13		dBuV/m	BuV/m dB	dBuV/m dBuV	dB/m	dB	dB	a r a	 cm	deg		
1		1500.000	40.20	-29.80	70.00	44.12	25.20	3.88	33.00	Peak		1222	
2	0	1686.000	45.17	-24.83	70.00	48.05	26.04	3.96	32.88	Peak	100	142	
3		2646.000	41.05	-28.95	70.00	39.95	28.91	4.97	32.78	Peak	10000	100000	

 Site
 : 03CH03-HY

 Condition
 : CNS/VCCI/CISPR-B 3m HORN-6741-2011-06 HORIZONTAL

 EUT
 :

 Power
 : 230V 50Hz

 Modele
 : KRR-4XX

 Memo
 : REC +LAN 1 Gbps+POWER(ETASIS)

		Freq MHz	Level dBuV/m	-	0ver	Limit	Readi	Antenna	Cable	Preamp	R.C.C.C.C.	Ant	Table
				BuV/m dB	dBuV/m dBuV	rever	ractor	LOSS	Factor	Kemark	POS	Pos	
	5					dB/m	dB	dB	el.	CTN.	deg		
1		3873.000	46.97	-27.03	74.00	41.99	32.16	5.49	32.67	Peak			
2		4818.000	47.98	-26.02	74.00	42.11	33.06	5.43	32.62	Peak			
3	0	5553.000	48.36	-25.64	74.00	41.60	34.02	5.31	32.57	Peak	1000	1000	

6.5. Photographs of Radiated Emission Test Configuration

- The photographs show the configuration that generates the maximum emission.
- For Below 1GHz

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 29 of 65Issued Date: Dec. 28, 2011Report Version: 01

Report No. : EC191309

For Above 1GHz

7. Harmonics Test

As specified on clause 7 of EN 61000-3-2:2006/A2:2009, the limits are not specified for equipment with a rated power of 75W or less.

The EUT meets the above condition, so it conforms to EN 61000-3-2.
8. Voltage Fluctuations Test

8.1. Standard

• Product Standard : EN 61000-3-3:2008

8.2. Test Procedure

The equipment shall be tested under the conditions of Clause 5.

The total impedance of the test circuit, excluding the appliance under test, but including the internal impedance of the supply source, shall be equal to the reference impedance. The stability and tolerance of the reference impedance shall be adequate to ensure that the overall accuracy of $\pm 8\%$ is achieved during the whole assessment procedure.

8.3. Test Equipment Settings

Line Voltage	:	230 V
Line Frequency	:	50 Hz
Measurement Delay	:	10.0 seconds
Pst Integration Time	:	10.0 minutes
Pst Integration Periods	:	1
Test Duration	:	10.0 minutes

8.4. Test Setup

8.5. Test Result of Voltage Fluctuation and Flicker Test

Final Test Result	: <u>PASS</u>
Temperature	: 22 °C
Relative Humidity	: 48 %
Atmospheric Pressure	: 103 kPa
Test Date	: Dec. 26, 2011
Test Engineer	: Yen-Liang Ou
Test Mode	: Mode 1

Urms =	230.1V	Freq =	49.987	Range:	2 A
Irms =	0.432A	lpk =	0.777A	cf =	1.801
P =	62.24W	S =	99.32VA	pf =	0.627

Test - Time : 1 x 10min = 10min (100 %)

LIN (Line Impedance Network): SLIN 0.24ohm +j0.15ohm N:0.16ohm +j0.10ohm

Limits :	Plt :	0.65	Pst :	1.00
	dmax :	4.00 %	dc :	3.30 %
	dtLim:	3.30 %	dt>Lim:	500ms

Test completed, Result: PASSED

	Pst	P50s	P10s	P3s	P1s	P0.1s	dmax	dc	dt>Lim
1	0.072	0.010	0.010	0.010	0.010	0.010	0.500	0.020	0.000

Final Test Result

Temperature Relative Hur Atmospherie Test Date Test Engine Test Mode	e nidity c Pressure er		: 22 °C : 48 % : 103 kP : Dec. 24 : Yen-Lia : Mode 2	a 4, 2011 ang Ou	
Urms =	230.1V	Freq =	50.000	Range:	2 A
Irms =	0.426A	lpk =	1.401A	cf =	3.291
P =	57.97W	S =	97.98VA	pf =	0.592
Test - Time	e : 1 x 1	0min = 10r	min (100) %)	5ohm N:0.16ohm +j0.10ohm
LIN (Line I	mpedance	Network) :	SLIN 0.24	ohm +j0.1	
			_		

: <u>PASS</u>

Limits :	Plt :	0.65	Pst :	1.00
	dmax :	4.00 %	dc :	3.30 %
	dtLim:	3.30 %	dt>Lim:	500ms

Test completed, Result: PASSED

	Pst	P50s	P10s	P3s	P1s	P0.1s	dmax	dc	dt>Lim
1	0.072	0.010	0.010	0.010	0.010	0.010	0.000	0.150	0.000

8.6. Photographs of Harmonics Test, Voltage Fluctuation and Flicker Test

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 35 of 65Issued Date: Dec. 28, 2011Report Version: 01

9. Electrostatic Discharge Immunity Test (ESD)

•	Final Test Result	:	PASS
•	Pass Performance Criteria	:	<u>A</u>
•	Required Performance Criteria	:	В
•	Basic Standard	:	IEC 61000-4-2:2008
•	Product Standard	:	EN 55024:1998/A1:2001/A2:2003
•	Level	:	3 for air discharge
		:	2 for contact discharge
•	Test Voltage	:	± 2 / ± 4 / ± 8 KV for air discharge
		:	± 2 / ± 4 KV for contact discharge
٠	Temperature	:	22 °C
•	Relative Humidity	:	49 %
•	Atmospheric Pressure	:	103 kPa
•	Test Date	:	Dec. 27, 2011
•	Test Mode	:	Mode 1
•	Test Engineer	:	Yen-Liang Ou
•	Observation	:	Normal.

9.1. Test Setup

The test setup consists of the test generator, EUT and auxiliary instrumentation necessary to perform DIRECT and INDIRECT application of discharges to the EUT as applicable, in the follow manner:

a. CONTACT DISCHARGE to the conductive surfaces and to coupling plane;

b. AIR DISCHARGE at insulating surfaces.

The preferred test method is that of type tests performed in laboratories and the only accepted method of demonstrating conformance with this standard. The EUT was arranged as closely as possible to arrangement in final installed conditions.

9.2. Test Setup for Tests Performed in Laboratory

A ground reference plane was provided on the floor of the test site. It was a metallic sheet (copper or aluminum) of 0.25 mm, minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. In the SPORTON EMC LAB., we provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system.

The EUT was arranged and connected according to its functional requirements. A distance of 1 m minimum was provided between the EUT and the wall of the Lab., and any other metallic structure. In cases where this length exceeds the length necessary to apply the discharges to the selected points, the excess length shall, where possible, be placed non-inductively off the ground reference plane and shall not come closer than 0.2 m to other conductive parts in the test setup.

Where the EUT is installed on a metal table, the table was connected to the reference plane via a cable with a 470k ohm resister located at each end, to prevent a build-up of charge. The test setup was consist a wooden table, 0.8 m high, standing on the ground reference plane. A HCP, 1.6 m x 0.8 m, was placed on the table. The EUT and cables was isolated from the HCP by an insulating support 0.5 mm thick. The VCP size, 0.5 m x 0.5 m.

9.3. ESD Test Procedure

- a. In the case of air discharge testing the climatic conditions shall be within the following ranges:
 - ambient temperature: 15 °C to 35 °C;
 - relative humidity : 30 % to 60 %;
 - atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT.
 The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.
- c. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final severity level should not exceed the product specification value in order to avoid damage to the equipment.
- d. The test shall be performed with both air discharge and contact discharge. On preselected points at least 10 single discharges (in the most sensitive polarity) shall be applied on air discharge. On preselected points at least 25 single discharges (in the most sensitive polarity) shall be applied on contact discharge.
- e. For the time interval between successive single discharges an initial value of one second is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- f. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- g. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted:
 - If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate.
 - Coating declared as insulating by the manufacturer shall only be submitted to the air discharge.
 - The contact discharge test shall not be applied to such surfaces.
- h. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.

9.4. Test Severity Levels

9.4.1. Contact Discharge

Level	Test Voltage (KV) of Contact discharge			
1	±2			
2	±4			
3	±6			
4	±8			
Х	Specified			
Remark : "X" is an open level.				

9.4.2. Air Discharge

Level	Test Voltage (KV) of Air Discharge				
1	±2				
2	±4				
3	±8				
4	±15				
Х	Specified				
Remark : "X" is an open level.					

9.5. Test Points

9.5.1.	Test	Result	of Air	Discharge
0.0			0.7.00	Dioonargo

Test Mathed	No. Of							
Test Method	Discharges	+2kV	-2kV	+4kV	-4kV	-8kV	+8kV	lest Record
LED	10	ND	ND	ND	ND	ND	ND	Note ¹
Power SW	10	ND	ND	ND	ND	ND	ND	Note ¹
RESET SW	10	ND	ND	ND	ND	ND	ND	Note ¹
AC SOCKET	10	ND	ND	ND	ND	ND	ND	Note ¹
USB port	10	ND	ND	ND	ND	ND	ND	Note ¹
Control Button	10	ND	ND	ND	ND	ND	ND	Note ¹
Remark	1. The "ND" is	. The "ND" is means No Discharge.						

9.5.2. Test Result of Contact Discharge

9.5.Z.I Direct discharge	9.	5.2.1	Direct	discharge
--------------------------	----	-------	--------	-----------

Teet Methed	No. Of	Contact	Toot Decend			
Test Method	Discharges	+2kV	-2kV	+4kV	-4kV	Test Record
case	25	А	А	А	А	None
screw	25	А	А	A	А	None
bracket	25	A	A	A	A	None
RJ45 port	25	A	A	A	А	None

9.5.2.2 Indirect discharge to HCP and VCP

To al Marth a d	No. Of	Contact	Test Descul			
Test Method	Discharges	+2kV	-2kV	+4kV	-4kV	lest Record
HCP (At Front)	25	А	А	А	А	None
HCP (At Left)	25	A	A	А	A	None
HCP (At Right)	25	A	A	А	A	None
HCP (At Rear)	25	A	A	А	A	None
VCP (At Front)	25	A	A	А	A	None
VCP (At Left)	25	А	А	А	А	None
VCP (At Right)	25	A	А	А	A	None
VCP (At Rear)	25	A	A	A	A	None

9.6. Photographs of Electrostatic Discharge Immunity Test

FRONT VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 41 of 65Issued Date: Dec. 28, 2011Report Version: 01

10. Radio Frequency Electromagnetic Field Immunity Test (RS)

•	Final Test Result	:	PASS
•	Pass Performance Criteria	:	<u>A</u>
•	Required Performance Criteria	:	A
•	Basic Standard	:	IEC 61000-4-3:2006/A1:2007/A2:2010
•	Product Standard	:	EN 55024:1998/A1:2001/A2:2003
•	Level	:	2
•	Frequency Range	:	80-1000 MHz
•	Additional Selection Frequency	:	80, 120, 160, 230, 434, 460, 600, 863, 900MHz
•	Dwell Time	:	2.9 seconds
•	Field Strength	:	3 V/m (unmodulated, r.m.s) 80% AM (1 kHz)
•	Temperature	:	22 °C
•	Relative Humidity	:	48 %
•	Atmospheric Pressure	:	103 kPa
•	Test Date	:	Dec. 27, 2011
٠	Test Mode	:	Mode 1
•	Test Engineer	:	Yen-Liang Ou
•	Observation	:	Normal.

10.1. Test Setup

NOTE : The SPORTON 7m x 4m x 4m semi-anechoic chamber is compliance with the sixteen point's uniform field requirement as stated in IEC 1000-4-3 Section 6.2.

The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels. To comply with local regulations and to prevent biological hazards to the testing personnel, it is recommended that these tests be carried out in a shielded enclosure or semi-anechoic chamber.

10.2. Test Procedure

- a. The equipment to be tested is placed in the center of the enclosure on a wooden table. The equipment is then connected to power and signal leads according to pertinent installation instructions.
- b. The bilog antenna which is enabling the complete frequency range of 80-1000MHz is placed 3m away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the applicable antennae.
- c. The test is normally performed with the generating antenna facing each of four sides of the EUT. The polarization of the field generated by the broadband (bilog) antenna necessitates testing each position twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.
- d. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency(ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- e. At each of the above conditions, the frequency range is swept 80-1000MHz, pausing to adjust the R.F. signal level or to switch oscillators and antenna. The rate of sweep is in the order of 1.5*10-3 decades/s. The sensitive frequencies or frequencies of dominant interest may be discretely analyzed.

10.3. Test Severity Levels

Frequency Band : 80-1000MHz

Level	Test field strength (V/m)				
1	1				
2	3				
3	10				
Х	Specified				
Remark : "X" is an open class.					

10.4. Test side

Antenna Polarization	Test side	Test Result
VERTICAL	FRONT	<u>PASS</u>
VERTICAL	BACK	<u>PASS</u>
VERTICAL	RIGHT	PASS
VERTICAL	LEFT	PASS
HORIZONTAL	FRONT	PASS
HORIZONTAL	BACK	PASS
HORIZONTAL	RIGHT	PASS
HORIZONTAL	LEFT	PASS

10.5. Photographs of Radio Frequency Electromagnetic Field Immunity Test

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 45 of 65Issued Date: Dec. 28, 2011Report Version: 01

11. Electrical Fast Transient/Burst Immunity Test (EFT/BURST)

 Final Test Result 	:	PASS
Pass Performance Criteria	:	<u>A</u>
Required Performance Criteria	:	В
Basic Standard	:	IEC 61000-4-4:2004
Product Standard	:	EN 55024:1998/A1:2001/A2:2003
• Level	:	on Input power ports 2
	:	on signal port and telecommunication ports 2
Test Voltage	:	on Input power ports \pm 0.5 / \pm 1.0 kV
	:	on signal port and telecommunication ports ± 0.25 / ± 0.5 kV
Temperature	:	22 °C
Relative Humidity	:	48 %
Atmospheric Pressure	:	103 kPa
Test Date	:	Dec. 27, 2011
Test Mode	:	Mode 1
Test Engineer	:	Yen-Liang Ou
Observation	:	Normal.

11.1. Test setup

Key

I length between clamp and the EUT to be tested (should be 0,5 m ± 0,05 m)

- (A) location for supply line coupling
- (B) location for signal lines coupling

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 The EUT was placed on a ground reference plane and was insulated from it by an insulating support about 0.1 m thick. If the EUT is table-top equipment, it was located approximately 0.8 m above the GRP. The GRP. Was a metallic sheet (copper or aluminum) of 0.25 mm, minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. It shall project beyond the EUT by at least 0.1 m on all sides and connected to the protective earth. In the SPORTON EMC LAB., We provided 1 mm thickness aluminum ground reference plane or 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 1 m x 1 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system. The EUT was arranged and connected according to its functional requirements. The minimum distance between the EUT and other conductive structures, except the GRP. Beneath the EUT, was more than 0.5 m. using the coupling clamp, the minimum distance between the coupling plates and all other conductive structures, except the GRP. Beneath the EUT, was more than 0.5 m. The length of the signal and power lines between the coupling device and the EUT was 1 m or less.

11.2. Test on Power Line

- a. The EFT/B-generator was located on the GRP. The length from the EFT/B-generator to the EUT as not exceeds 1 m.
- b. The EFT/B-generator provides the ability to apply the test voltage in a non-symmetrical condition to the power supply input terminals of the EUT.

11.3. Test on Communication Lines

- a. The coupling clamp is composed of a clamp unit for housing the cable (length more than 3 m), and was placed on the GRP.
- b. The coupling clamp provides the ability of coupling the fast transient/bursts to the cable under test.

11.4. Test Procedure

- a. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
 - ambient temperature: 15 °C to 35 °C;
 - relative humidity : 45 % to 75 %;
 - atmospheric pressure : 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- b. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- c. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- d. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria :
 - Normal performance within the specification limits.
 - Temporary degradation or loss of function or performance which is self-recoverable.
 - Temporary degradation or loss of function or performance which requires operator intervention or system reset.
 - Degradation or loss of function which is not recoverable due to damage of equipment (components).

11.5. Test Severity Levels

The following test severity levels are recommended for the fast transient/burst test :

Open circuit output test voltage ± 10%									
Level	On Input power ports	On signal port and telecommunication ports							
1	0.5 KV	0.25 KV							
2	1.0 KV	0.50 KV							
3	2.0 KV	1.00 KV							
4	4.0 KV	2.00 KV							
Х	Specified	Specified							
Remark · " X " is an on	en level								

The level is subject to negotiation between the user and the manufacturer or is specified by the manufacturer.

11.6. Photographs of Electrical Fast Transient/BURST Immunity Test

REAR VIEW

FRONT VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number:49 of 65Issued Date:Dec. 28, 2011Report Version:01

CLAMP

12. Surge Immunity Test

•	Final Test Result	:	PASS
•	Pass Performance Criteria	:	<u>B</u>
•	Required Performance Criteria	:	В
•	Basic Standard	:	IEC 61000-4-5:2005
•	Product Standard	:	EN 55024:1998/A1:2001/A2:2003
•	Surge wave form (Tr/Th)	:	1.2/50(8/20)μs
•	Level	:	on Input power ports 3
		:	on signal port and telecommunication ports N/A
•	Test Voltage	:	on Input power ports ± 0.5 / ± 1.0 / ± 2.0 kV
		:	on signal port and telecommunication ports N/A
•	Temperature	:	22 °C
•	Relative Humidity	:	48 %
٠	Atmospheric Pressure	:	103 kPa
•	Test Date	:	Dec. 27, 2011
•	Test Mode	:	Mode 1-2
•	Test Engineer	:	Yen-Liang Ou
•	Observation	:	During the test at ± 1 kV on L-N, the EUT was interfered. After the test, the equipment continued to operate as intended by the operator for Mode 2.
•	Remark	:	The function loss were meet manufacturer' spec.
			The test on signal/telecommunication ports is not required due to the ports does not connect directly to outdoor cables for Mode 1.

12.1. Test Record

■ Input AC power port:

<FOR Mode 1>

	Test Leastion	Polority		Phase	Angle		Bomork
voltage (KV)	Test Location	Polarity	0 °	90°	180°	270 °	Rellidik
	I N	+	А	Α	Α	Α	Normal
0.5/1.0	L - IN	_	А	Α	Α	А	Normal
		+	А	Α	Α	Α	Normal
	L-FC		А	Α	Α	А	Normal
0.5/1.0/2.0		+	A	A	Α	A	Normal
	IN - PE		А	A	A	A	Normal

⊕ <u>Remark : PE = Earth reference</u>

<FOR Mode 2>

	Test Leastion	Delerity		Bomark				
voltage (KV) lest Location		Polarity	0 °	90°	180°	270 °	Rellidik	
	I N	+	В	В	В	В	Refer Observation	
0.5/1.0	L - IN	_	В	В	В	В	Refer Observation	
		+	А	Α	Α	А	Normal	
	L-FC	—	А	Α	Α	А	Normal	
0.5/1.0/2.0		+	Α	Α	Α	А	Normal	
	IN-PE	—	А	Α	А	А	Normal	

⊕ <u>Remark : PE = Earth reference</u>

12.2. Test Level

Level	Open-circuit test voltage, ± 10%, KV						
1	0.5						
2	1.0						
3	2.0						
4	4 4.0						
x Specified							
NOTE - x is an open class.							
This level can be specified in the product specification.							

12.3. Test Procedure

a. Climatic conditions

The climatic conditions shall comply with the following requirements :

- -- ambient temperature : 15 °C to 35 °C
- -- relative humidity : 10 % to 75 %
- -- atmospheric pressure : 86 kPa to 106 kPa (860 mbar to 1060 mbar)
- b. Electromagnetic conditions

The electromagnetic environment of the laboratory shall not influence the test results.

- c. The test shall be performed according the test plan that shall specify the test set-up with
 - -- generator and other equipment utilized;
 - -- test level (voltage/current);
 - -- generator source impedance;
 - -- internal or external generator trigger;
 - -- number of tests : at least five positive and five negative at the selected points;
 - -- repetition rate : maximum 1/min.
 - -- inputs and outputs to be tested;
 - -- representative operating conditions of the EUT;
 - -- sequence of application of the surge to the circuit;
 - -- phase angle in the case of a.c. power supply;
 - -- actual installation conditions, for example : AC : neutral earthed,

DC : (+) or (-) earthed to simulated the actual earthing conditions.

- d. If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the a.c. voltage wave (positive and negative).
- e. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- f. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- g. All lower levels including the selected test level shall be satisfied. For testing the secondary protection, the output voltage of the generator shall be increased up to the worst-case voltage breakdown level (let-through level) of the primary protection.
- h. If the actual operating signal sources are not available, the may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according the test plan.
- i. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and

negative test pulses shall be applied. For acceptance test previously unstressed equipment shall be used to the protection devices shall be replaced.

12.4. Operating Condition

Full system

12.5. Photographs of Surge Immunity Test

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number:55 of 65Issued Date:Dec. 28, 2011Report Version:01

13. Conducted Disturbances Induced by Radio-Frequency Field Immunity Test (CS)

•	Final Test Result	:	PASS
•	Pass Performance Criteria	:	<u>A</u>
•	Required Performance Criteria	:	A
•	Basic Standard	:	IEC 61000-4-6:2008
•	Product Standard	:	EN 55024:1998/A1:2001/A2:2003
•	Level	:	2
•	Test Voltage	:	3 V (unmodulated, r.m.s) 80% AM (1 kHz)
•	Frequency Range	:	0.15 MHz to 80 MHz
•	Additional Selection Frequency	:	0.2, 1, 7.1, 13.56, 21, 27.12, 40.68MHz
•	Dwell time	:	2.9 seconds
•	Frequency step size	:	1 %
•	Coupling mode	:	CDN-M2+M3 for Input power ports
		:	CDN-RJ45 for signal port and telecommunication ports
•	Temperature	:	22 °C
•	Relative Humidity	:	48 %
•	Atmospheric Pressure	:	103 kPa
•	Test Date	:	Dec. 27, 2011
•	Test Mode	:	Mode 1
•	Test Engineer	:	Yen-Liang Ou
•	Observation	:	Normal.

13.1. Test Level

Level	Voltage Level (EMF)				
1	1 V rms				
2	3 V rms				
3	10 V rms				
x	Specified				
NOTE - x is an open class. This level can be specified in the product specification.					

13.2. Operating Condition

Full system

13.3. Test Procedure

- a. The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- b. This test method test can be performed without using a sell shielded enclosure. This is because the disturbance levels applied and the geometry of the setups are not likely to radiated a high amount of energy, especially at the lower frequencies. If under certain circumstances the radiated energy is too high, a shielded enclosure has to be used.
- c. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.
- e. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency(ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- f. In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- g. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- h. The use of special exercising programs is recommended.
- i. Testing shall be performed according to a Test Plan, which shall be included in the test report.
- j. It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.

13.4. Photographs of CS tests

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number:58 of 65Issued Date:Dec. 28, 2011Report Version:01

14. Power Frequency Magnetic Field immunity tests

•	ener requertey mag		
•	Final Test Result	:	PASS
•	Pass Performance Criteria	:	<u>A</u>
•	Required Performance Criteria	:	A
•	Basic Standard	:	IEC 61000-4-8:2009
•	Product Standard	:	EN 55024:1998/A1:2001/A2:2003
•	Temperature	:	22 °C
•	Relative Humidity	:	48 %
•	Atmospheric Pressure	:	103 kPa
•	Test Date	:	Dec. 27, 2011
•	Test Mode	:	Mode 1
•	Test Engineer	:	Yen-Liang Ou

Observation
 Normal.

14.1. Test Record

Power Frequency Magnetic Field	Testing duration	Coil Orientation	Results	Remark
50Hz, 1A/m	1.0 Min	X-axis	Pass	Normal
50Hz, 1A/m	1.0 Min	Y-axis	Pass	Normal
50Hz, 1A/m	1.0 Min	Z-axis	Pass	Normal

14.2. Test Setup

EUT : Equipment under test G : Test Generator

14.3. Photographs of Power Frequency Magnetic Field immunity tests

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255 Page Number: 60 of 65Issued Date: Dec. 28, 2011Report Version: 01

15. Voltage Dips and Voltage Interruptions Immunity Tests

: PASS Final Test Result Pass Performance Criteria : <u>C</u> for voltage interruption, <u>A/A</u> for voltage dips Required Performance Criteria : C for voltage interruption, C/B for voltage dips Basic Standard : IEC 61000-4-11:2004 Product Standard : EN 55024:1998/A1:2001/A2:2003 : Test Port Input power ports : 22 ℃ • Temperature [:] 48 % Relative Humidity • Atmospheric Pressure : 103 kPa Test Date : Dec. 27, 2011 : Mode 1 Test Mode : Yen-Liang Ou • Test Engineer

15.1. Test Record of Voltage Interruption

Voltage	Phase Angle		Reduction	Duration	Observation	
(V)	0 °	180 °	Voltage	(Periods)	Observation	
100/240	С	С	>95 %	250	After the interruption, the power of EUT was off. The power of the EUT must be reset by the operator	

15.2. Test Record of Voltage Dips

Voltage	Phase	Angle	Reduction	Duration	Observation
(V)	0 °	180 °	Voltage	(Periods)	Observation
100/240	А	А	30 %	25	Normal
100/240	А	А	>95 %	0.5	Normal

15.3. Testing Requirement and Procedure

The test was based on IEC 61000-4-11:2004

15.4. Test Conditions

- 1. Source voltage and frequency : 100/240V, 50Hz, Single phase.
- 2. Test of interval : 10 sec.
- 3. Level and duration : Sequency of 3 dips/interrupts.
- 4. Voltage rise (and fall) time : 1 \sim 5 $\mu s.$

15.5. Operating Condition

Full system

15.6. Photographs of Voltage Dips and Voltage Interruptions Immunity Tests

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

16. List of Measuring Equipment Used

<EMI>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Receiver R&S		ESCS 30	100357	9 kHz - 2.75 GHz	Nov. 18, 2011	Conduction (CO01-NH)
LISN	SCHAFFNER	NNB41	04/10053	9kHz - 30MHz	Nov. 17, 2011	Conduction (CO01-NH)
Power Filter	CORCOM	MR12030	N/A	30A*2	N/A	Conduction (CO01-NH)
RF Cable-CON	Suhner Switzerland	RG223/U	CB004	9kHz - 30MHz	Dec. 13, 2011	Conduction (CO01-NH)
Impedance Stabilization Network	TESEQ GMBH	ISN T400A	25669	150kHz - 30MHz	Sep. 19, 2011	Conduction (CO01-NH)
Impedance Stabilization Network	TESEQ GMBH	ISN T800	26105	150kHz - 30MHz	Sep. 19, 2011	Conduction (CO01-NH)
Open Area Test Site	SPORTON	OATS-10	OS02-NH	30 MHz - 1 GHz 10m, 3m	Jan. 03, 2011	Radiation (OS02-NH)
Amplifier	BURGEON	BPA-530	100203	0.01 MHz - 3 GHz	May 24, 2011	Radiation (OS02-NH)
Receiver	R&S	ESCI	100497	9 kHz – 3 GHz	Mar. 22, 2011	Radiation (OS02-NH)
Bilog Antenna	CHASE	CBL6122B	2884	30 MHz - 2 GHz	Jan. 16, 2011	Radiation (OS02-NH)
Turn Table	EMCO	2080	9508-1805	0 - 360 degree	N/A	Radiation (OS02-NH)
Antenna Mast	ETS	2075-2	2385	1 m - 4 m	N/A	Radiation (OS02-NH)
RF Cable-R10m	MIYAZAKI	5DFB	CB044	30 MHz - 1 GHz	Sep. 16, 2011	Radiation (OS02-NH)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz ~ 1 GHz 3m	Dec. 12, 2011	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz ~ 26.5 GHz	Aug. 08, 2011	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1 GHz ~ 18 GHz	May 30, 2011	Radiation (03CH03-HY)
RF Cable-high	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz ~ 40 GHz	Jan. 18, 2011	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	MF	MF-7802	MF780208179	1 m - 4 m	N/A	Radiation (03CH03-HY)
Receiver	R&S	ESI	838496/008	20 Hz ~ 7 GHz	Apr. 24, 2011	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is one year.

Report No. : EC191309

<EMS>

	1	1	i	1	i	
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
ESD Generator	TESEQ AG	NSG 437	192	Air: 0 ~ 30 KV Contact: 0 ~15KV	Oct. 07, 2011	ESD
Amplifier	AMPLIFIER& RESEARCH	250W1000A	0325368	80M~1GHz	Sep. 09, 2011	RS
DUAL DIRECTIONAL COUPLER	FARNKONIA	FLH200/100	1127	80-1GHz	Sep. 07, 2011	RS
S.G.	ROHDE& SCHWARZ	SML03	103349	9kHz~3.3GHz	Sep. 08, 2011	RS
METER	HP	438A	3513U04050	100 kHz~26.5 GHz	Sep. 08, 2011	RS
POWER Sensor	HP	8481D	3318A13140	10MHz~18GHz	Sep. 08, 2011	RS
POWER Sensor	HP	8482A	3318A26464	100 kHz~4.2GHz	Sep. 08, 2011	RS
Attenuator	HP	8491A	53603	3dB	N/A	RS
EMCPro System	KeyTek	EMCPro	0609221	0 KV - 4.4 KV	Oct. 17, 2011	EFT
EFT/Clamp	KEYTEK	CCL-4/S	0303191	0 KV -1 KV	N/A	EFT
SURGE Generator Bi-Wave	KEYTEK	EMCPRO	0609221	0 KV -6 KV/2Ω 0KV-500V/12Ω	Oct. 17, 2011	SURGE
Conducted Immunity Test System	SCHAFFNER	NSG2070	1091	100KHz ~ 250MHz FM 1KHZ 80%	Jun. 17, 2011	CS
Attenuator	EM TEST	75W-DC-250 MHz 06	0004166A	150 kHz – 230 MHz	Jun. 15, 2011	CS
Koppel- Eutkoppelnetzwerk	FRANKONIA	CDN M2+M3	A3011018	150k~230MHz	Jun. 19, 2011	CS
Coupling/ Decoupling Network	FRANKONIA	CDN RJ45	A3023005	150k~230MHz	Jun. 19, 2011	CS (RJ45)
Magnetic Field Antenna	FCC	F-1000-4-8/9/10-L-1M	9830	0~125A	Apr. 19, 2011	Magnetic
Magnetic Generator	FCC	F-1000-4-8-G-125A	05004	0~125A	Apr. 19, 2011	Magnetic
EMCPro System	KeyTek	EMCPro	0609221	230VA/50Hz/60Hz 0%Open/5S 0%Short/5S 40%0.10S 70%/0.01S	Oct. 17, 2011	DIP
Harmonic/Flicker Test System	EMC PARTNER	Harmonics -1000	088	4000VA 16A PEAK	Sep. 15, 2011	Harmonics, Flicker

Calibration Interval of instruments listed above is one year.

APPENDIX A. Photographs of EUT

